論文の概要: Rank-Then-Score: Enhancing Large Language Models for Automated Essay Scoring
- arxiv url: http://arxiv.org/abs/2504.05736v1
- Date: Tue, 08 Apr 2025 07:10:51 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-09 13:31:36.519426
- Title: Rank-Then-Score: Enhancing Large Language Models for Automated Essay Scoring
- Title(参考訳): Rank-Then-Score: 自動評価のための大規模言語モデルの強化
- Authors: Yida Cai, Kun Liang, Sanwoo Lee, Qinghan Wang, Yunfang Wu,
- Abstract要約: 大規模言語モデルに基づく微調整フレームワークであるRange-Then-Score (RTS)を提案する。
HSKとASAPという2つのベンチマークデータセットの実験結果は、RTSが平均QWKで直接プロンプト(Vanilla)法を一貫して上回っていることを示している。
- 参考スコア(独自算出の注目度): 6.459215652021233
- License:
- Abstract: In recent years, large language models (LLMs) achieve remarkable success across a variety of tasks. However, their potential in the domain of Automated Essay Scoring (AES) remains largely underexplored. Moreover, compared to English data, the methods for Chinese AES is not well developed. In this paper, we propose Rank-Then-Score (RTS), a fine-tuning framework based on large language models to enhance their essay scoring capabilities. Specifically, we fine-tune the ranking model (Ranker) with feature-enriched data, and then feed the output of the ranking model, in the form of a candidate score set, with the essay content into the scoring model (Scorer) to produce the final score. Experimental results on two benchmark datasets, HSK and ASAP, demonstrate that RTS consistently outperforms the direct prompting (Vanilla) method in terms of average QWK across all LLMs and datasets, and achieves the best performance on Chinese essay scoring using the HSK dataset.
- Abstract(参考訳): 近年,大規模言語モデル (LLM) は様々なタスクにおいて顕著な成功を収めている。
しかしながら、AES(Automated Essay Scoring)領域におけるそれらのポテンシャルは、いまだに未発見のままである。
また、英語データと比較すると、中国語AESの手法は十分に開発されていない。
本稿では,そのエッセイ評価能力を高めるために,大規模言語モデルに基づく微調整フレームワークであるRang-Then-Score(RTS)を提案する。
具体的には、特徴量の多いデータでランキングモデル(Ranker)を微調整し、候補スコアの形式でランキングモデルの出力を出力し、エッセイ内容をスコアモデル(Scorer)に入力して最終的なスコアを生成する。
HSKとASAPという2つのベンチマークデータセットの実験結果によると、RTSは全てのLLMとデータセットの平均QWKで直接プロンプト(Vanilla)法を一貫して上回り、HSKデータセットを用いた中国のエッセイ評価において最高のパフォーマンスを達成している。
関連論文リスト
- RDBE: Reasoning Distillation-Based Evaluation Enhances Automatic Essay Scoring [0.0]
Reasoning Distillation-Based Evaluation (RDBE) は、解釈可能性を統合し、モデルスコアの背景にある理論的根拠を解明する。
実験により, データセットに考慮したすべてのスコアリングルーリックに対してRDBEの有効性が示された。
論文 参考訳(メタデータ) (2024-07-03T05:49:01Z) - Unleashing Large Language Models' Proficiency in Zero-shot Essay Scoring [12.66710643199155]
Multi Traitsのフレームワークは、大きな言語モデルに十分な可能性を秘めている。
特徴平均化と min-max スケーリングによる総合スコアを導出する。
MTSの助けを借りて、小型のLlama2-13b-chatはChatGPTを大幅に上回る。
論文 参考訳(メタデータ) (2024-04-07T12:25:35Z) - Zero-Shot Listwise Document Reranking with a Large Language Model [58.64141622176841]
本稿では,タスク固有の学習データを用いることなく,言語モデル(LRL)を用いたリスワイズ・リランカを提案する。
3つのTRECウェブサーチデータセットの実験により、LRLは第1段検索結果の再ランク付け時にゼロショットポイントワイズ法より優れるだけでなく、最終段再ランカとしても機能することが示された。
論文 参考訳(メタデータ) (2023-05-03T14:45:34Z) - Ensemble Transfer Learning for Multilingual Coreference Resolution [60.409789753164944]
非英語で作業する場合に頻繁に発生する問題は、注釈付きトレーニングデータの不足である。
我々は,様々なトランスファー学習技術を組み合わせた,シンプルだが効果的なアンサンブルベースのフレームワークを設計する。
また、ウィキペディアアンカーテキストを利用して、コア参照解決モデルをブートストラップする低コストのTL手法を提案する。
論文 参考訳(メタデータ) (2023-01-22T18:22:55Z) - Alibaba-Translate China's Submission for WMT 2022 Quality Estimation
Shared Task [80.22825549235556]
我々は、UniTEという品質評価共有タスクにおいて、文レベルのMQMベンチマークを提出する。
具体的には、トレーニング中に3種類の入力形式と事前学習された言語モデルを組み合わせたUniTEのフレームワークを用いる。
その結果,我々のモデルは多言語・英語・ロシア語設定では第1位,英語・ドイツ語・中国語設定では第2位に達した。
論文 参考訳(メタデータ) (2022-10-18T08:55:27Z) - Improving Performance of Automated Essay Scoring by using
back-translation essays and adjusted scores [0.0]
バックトランスレーションとスコア調整を用いたエッセイスコアペア数を増やす手法を提案する。
先行作業から得られたモデルを用いて,拡張データの有効性を評価する。
モデルをトレーニングするために拡張データを使用することで、モデルの性能が向上した。
論文 参考訳(メタデータ) (2022-03-01T11:05:43Z) - From Good to Best: Two-Stage Training for Cross-lingual Machine Reading
Comprehension [51.953428342923885]
モデル性能を向上させるための2段階のアプローチを開発する。
我々は、トップk予測が正確な答えを含む確率を最大化するために、ハードラーニング(HL)アルゴリズムを設計する。
第2段階では, 正解と他の候補との微妙な違いを学習するために, 解答を意識したコントラスト学習機構が開発された。
論文 参考訳(メタデータ) (2021-12-09T07:31:15Z) - Ranking Creative Language Characteristics in Small Data Scenarios [52.00161818003478]
DirectRankerを適用して、小さなデータでクリエイティブ言語をランク付けするための、新しいディープモデルを提供します。
スパーストレーニングデータを用いた実験により、標準的なニューラルネットワークのランク付け手法の性能は小さなデータセットで崩壊するが、DirectRankerは依然として有効であることがわかった。
論文 参考訳(メタデータ) (2020-10-23T18:57:47Z) - Evaluation Toolkit For Robustness Testing Of Automatic Essay Scoring
Systems [64.4896118325552]
モデル逆算評価スキームと関連するメトリクスを用いて、現状のAESモデルを評価する。
AESモデルは非常に過大評価されていることがわかった。質問の話題に関係のない内容の重い修正(25%まで)でさえ、モデルが生み出すスコアを低下させることはない。
論文 参考訳(メタデータ) (2020-07-14T03:49:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。