論文の概要: Leveraging Axis-Aligned Subspaces for High-Dimensional Bayesian Optimization with Group Testing
- arxiv url: http://arxiv.org/abs/2504.06111v1
- Date: Tue, 08 Apr 2025 15:00:15 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-09 13:31:31.932319
- Title: Leveraging Axis-Aligned Subspaces for High-Dimensional Bayesian Optimization with Group Testing
- Title(参考訳): 群検定による高次元ベイズ最適化のための軸配向部分空間の活用
- Authors: Erik Hellsten, Carl Hvarfner, Leonard Papenmeier, Luigi Nardi,
- Abstract要約: 我々は,高次元領域における効率的な最適化を容易にするために,能動変数を同定するグループテスト(GT)手法を提案する。
確立されたGT理論を連続領域上の函数に拡張する。
第2段階では、GTBOは活性次元をより重要視することで最適化を導く。
- 参考スコア(独自算出の注目度): 6.5202942559480075
- License:
- Abstract: Bayesian optimization (BO ) is an effective method for optimizing expensive-to-evaluate black-box functions. While high-dimensional problems can be particularly challenging, due to the multitude of parameter choices and the potentially high number of data points required to fit the model, this limitation can be addressed if the problem satisfies simplifying assumptions. Axis-aligned subspace approaches, where few dimensions have a significant impact on the objective, motivated several algorithms for high-dimensional BO . However, the validity of this assumption is rarely verified, and the assumption is rarely exploited to its full extent. We propose a group testing ( GT) approach to identify active variables to facilitate efficient optimization in these domains. The proposed algorithm, Group Testing Bayesian Optimization (GTBO), first runs a testing phase where groups of variables are systematically selected and tested on whether they influence the objective, then terminates once active dimensions are identified. To that end, we extend the well-established GT theory to functions over continuous domains. In the second phase, GTBO guides optimization by placing more importance on the active dimensions. By leveraging the axis-aligned subspace assumption, GTBO outperforms state-of-the-art methods on benchmarks satisfying the assumption of axis-aligned subspaces, while offering improved interpretability.
- Abstract(参考訳): ベイズ最適化(BO)は、高価なブラックボックス関数を最適化する有効な方法である。
高次元問題は特に困難であるが、パラメータの選択の多さとモデルに適合するために必要なデータポイントの多さにより、この問題が仮定の単純化を満足すれば、この問題に対処できる。
軸整列部分空間アプローチでは、目的に有意な影響を及ぼす次元がほとんどなく、高次元BOに対するいくつかのアルゴリズムを動機付けている。
しかし、この仮定の有効性はめったに検証されず、その仮定が完全に活用されることはめったにない。
本稿では,これらの領域における効率的な最適化を容易にするために,アクティブ変数を同定するためのグループテスト(GT)手法を提案する。
提案したアルゴリズムであるグループテストベイズ最適化(GTBO)は、まず変数のグループを体系的に選択し、目的に影響を及ぼすかどうかをテストし、アクティブな次元が特定されれば終了する。
そのために、確立されたGT理論を連続領域上の函数に拡張する。
第2段階では、GTBOは活性次元をより重要視することで最適化を導く。
軸整列部分空間の仮定を活用することで、GTBOは軸整列部分空間の仮定を満たすベンチマーク上で最先端の手法より優れ、解釈可能性の向上を提供する。
関連論文リスト
- An Adaptive Dimension Reduction Estimation Method for High-dimensional
Bayesian Optimization [6.79843988450982]
BOを高次元設定に拡張するための2段階最適化フレームワークを提案する。
私たちのアルゴリズムは、これらのステップを並列またはシーケンスで操作する柔軟性を提供します。
数値実験により,困難シナリオにおける本手法の有効性が検証された。
論文 参考訳(メタデータ) (2024-03-08T16:21:08Z) - Poisson Process for Bayesian Optimization [126.51200593377739]
本稿では、Poissonプロセスに基づくランキングベースの代理モデルを提案し、Poisson Process Bayesian Optimization(PoPBO)と呼ばれる効率的なBOフレームワークを提案する。
従来のGP-BO法と比較すると,PoPBOはコストが低く,騒音に対する堅牢性も良好であり,十分な実験により検証できる。
論文 参考訳(メタデータ) (2024-02-05T02:54:50Z) - High-dimensional Bayesian Optimization with Group Testing [7.12295305987761]
本研究では,高次元領域における効率的な最適化を容易にするために,能動変数を同定するグループテスト手法を提案する。
提案したアルゴリズムであるグループテストベイズ最適化(GTBO)は、まず変数のグループを体系的に選択し、テストするテストフェーズを実行する。
第2段階では、GTBOは活性次元をより重要視することで最適化を導く。
論文 参考訳(メタデータ) (2023-10-05T12:52:27Z) - Learning Regions of Interest for Bayesian Optimization with Adaptive
Level-Set Estimation [84.0621253654014]
本稿では,高信頼領域を適応的にフィルタするBALLETというフレームワークを提案する。
理論的には、BALLETは探索空間を効率的に縮小することができ、標準BOよりも厳密な後悔を示すことができる。
論文 参考訳(メタデータ) (2023-07-25T09:45:47Z) - Scalable Bayesian optimization with high-dimensional outputs using
randomized prior networks [3.0468934705223774]
本稿では,確率化された先行するニューラルネットワークの自己ストラップ型アンサンブルに基づくBOとシーケンシャル意思決定のためのディープラーニングフレームワークを提案する。
提案手法は,高次元ベクトル空間や無限次元関数空間の値を取る場合においても,設計変数と関心量の関数的関係を近似することができることを示す。
提案手法をBOの最先端手法に対して検証し,高次元出力の課題に対して優れた性能を示す。
論文 参考訳(メタデータ) (2023-02-14T18:55:21Z) - Generalizing Bayesian Optimization with Decision-theoretic Entropies [102.82152945324381]
統計的決定論の研究からシャノンエントロピーの一般化を考える。
まず,このエントロピーの特殊なケースがBO手順でよく用いられる獲得関数に繋がることを示す。
次に、損失に対する選択肢の選択が、どのようにして柔軟な獲得関数の族をもたらすかを示す。
論文 参考訳(メタデータ) (2022-10-04T04:43:58Z) - Unified Convergence Analysis for Adaptive Optimization with Moving Average Estimator [75.05106948314956]
1次モーメントに対する大きな運動量パラメータの増大は適応的スケーリングに十分であることを示す。
また,段階的に減少するステップサイズに応じて,段階的に運動量を増加させるための洞察を与える。
論文 参考訳(メタデータ) (2021-04-30T08:50:24Z) - High-Dimensional Bayesian Optimization with Sparse Axis-Aligned
Subspaces [14.03847432040056]
スパース軸整列部分空間上で定義される代理モデルは、柔軟性とパーシモニーの間に魅力的な妥協をもたらすと我々は主張する。
提案手法は,ハミルトニアンモンテカルロを推論に用い,未知の目的関数のモデル化に関連するスパース部分空間を迅速に同定できることを実証する。
論文 参考訳(メタデータ) (2021-02-27T23:06:24Z) - Bilevel Optimization: Convergence Analysis and Enhanced Design [63.64636047748605]
バイレベル最適化は多くの機械学習問題に対するツールである。
Stoc-BiO という新しい確率効率勾配推定器を提案する。
論文 参考訳(メタデータ) (2020-10-15T18:09:48Z) - Sequential Subspace Search for Functional Bayesian Optimization
Incorporating Experimenter Intuition [63.011641517977644]
本アルゴリズムは,実験者のガウス過程から引き出された一組の引き数で区切られた関数空間の有限次元ランダム部分空間列を生成する。
標準ベイズ最適化は各部分空間に適用され、次の部分空間の出発点(オリジン)として用いられる最良の解である。
シミュレーションおよび実世界の実験,すなわちブラインド関数マッチング,アルミニウム合金の最適析出強化関数の探索,深層ネットワークの学習速度スケジュール最適化において,本アルゴリズムを検証した。
論文 参考訳(メタデータ) (2020-09-08T06:54:11Z) - Scalable Constrained Bayesian Optimization [10.820024633762596]
ブラックボックス制約下での高次元ブラックボックス関数のグローバルな最適化は、機械学習、制御、科学コミュニティにおける普及的なタスクである。
本稿では,上記の課題を克服し,現状を推し進めるスケーラブルな制約付きベイズ最適化(SCBO)アルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-02-20T01:48:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。