Quantum neural networks with multi-qubit potentials
- URL: http://arxiv.org/abs/2105.02756v2
- Date: Mon, 5 Jun 2023 16:27:14 GMT
- Title: Quantum neural networks with multi-qubit potentials
- Authors: Yue Ban, E. Torrontegui and J. Casanova
- Abstract summary: We show that the presence of multi-qubit potentials in the quantum perceptrons enables more efficient information processing tasks.
This simplification in the network architecture paves the way to address the connectivity challenge to scale up a quantum neural network.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose quantum neural networks that include multi-qubit interactions in
the neural potential leading to a reduction of the network depth without losing
approximative power. We show that the presence of multi-qubit potentials in the
quantum perceptrons enables more efficient information processing tasks such as
XOR gate implementation and prime numbers search, while it also provides a
depth reduction to construct distinct entangling quantum gates like CNOT,
Toffoli, and Fredkin. This simplification in the network architecture paves the
way to address the connectivity challenge to scale up a quantum neural network
while facilitates its training.
Related papers
- CTRQNets & LQNets: Continuous Time Recurrent and Liquid Quantum Neural Networks [76.53016529061821]
Liquid Quantum Neural Network (LQNet) and Continuous Time Recurrent Quantum Neural Network (CTRQNet) developed.
LQNet and CTRQNet achieve accuracy increases as high as 40% on CIFAR 10 through binary classification.
arXiv Detail & Related papers (2024-08-28T00:56:03Z) - Enhancing the expressivity of quantum neural networks with residual
connections [0.0]
We propose a quantum circuit-based algorithm to implement quantum residual neural networks (QResNets)
Our work lays the foundation for a complete quantum implementation of the classical residual neural networks.
arXiv Detail & Related papers (2024-01-29T04:00:51Z) - Distributed Quantum Neural Networks via Partitioned Features Encoding [0.0]
Quantum neural networks are expected to be a promising application in near-term quantum computing.
We propose to make a prediction by approximating outputs of a large circuit using multiple small circuits.
Our proposed method not only achieved highly accurate predictions for a large dataset but also reduced the hardware requirements for each quantum neural network.
arXiv Detail & Related papers (2023-12-21T08:21:44Z) - Entanglement-Assisted Quantum Networks: Mechanics, Enabling
Technologies, Challenges, and Research Directions [66.27337498864556]
This paper presents a comprehensive survey of entanglement-assisted quantum networks.
It provides a detailed overview of the network structure, working principles, and development stages.
It also emphasizes open research directions, including architecture design, entanglement-based network issues, and standardization.
arXiv Detail & Related papers (2023-07-24T02:48:22Z) - QuanGCN: Noise-Adaptive Training for Robust Quantum Graph Convolutional
Networks [124.7972093110732]
We propose quantum graph convolutional networks (QuanGCN), which learns the local message passing among nodes with the sequence of crossing-gate quantum operations.
To mitigate the inherent noises from modern quantum devices, we apply sparse constraint to sparsify the nodes' connections.
Our QuanGCN is functionally comparable or even superior than the classical algorithms on several benchmark graph datasets.
arXiv Detail & Related papers (2022-11-09T21:43:16Z) - Entangling Quantum Generative Adversarial Networks [53.25397072813582]
We propose a new type of architecture for quantum generative adversarial networks (entangling quantum GAN, EQ-GAN)
We show that EQ-GAN has additional robustness against coherent errors and demonstrate the effectiveness of EQ-GAN experimentally in a Google Sycamore superconducting quantum processor.
arXiv Detail & Related papers (2021-04-30T20:38:41Z) - The Hintons in your Neural Network: a Quantum Field Theory View of Deep
Learning [84.33745072274942]
We show how to represent linear and non-linear layers as unitary quantum gates, and interpret the fundamental excitations of the quantum model as particles.
On top of opening a new perspective and techniques for studying neural networks, the quantum formulation is well suited for optical quantum computing.
arXiv Detail & Related papers (2021-03-08T17:24:29Z) - A Derivative-free Method for Quantum Perceptron Training in
Multi-layered Neural Networks [2.962453125262748]
gradient-free approach for training multi-layered neural networks based upon quantum perceptrons.
We make use of measurable operators to define the states of the network in a manner consistent with a Markov process.
arXiv Detail & Related papers (2020-09-23T01:38:34Z) - Probing Criticality in Quantum Spin Chains with Neural Networks [0.0]
We show that even neural networks with no hidden layers can be effectively trained to distinguish between magnetically ordered and disordered phases.
Our results extend to a wide class of interacting quantum many-body systems and illustrate the wide applicability of neural networks to many-body quantum physics.
arXiv Detail & Related papers (2020-05-05T12:34:50Z) - Realising and compressing quantum circuits with quantum reservoir
computing [2.834895018689047]
We show how a random network of quantum nodes can be used as a robust hardware for quantum computing.
Our network architecture induces quantum operations by optimising only a single layer of quantum nodes.
In the few-qubit regime, sequences of multiple quantum gates in quantum circuits can be compressed with a single operation.
arXiv Detail & Related papers (2020-03-21T03:29:16Z) - Entanglement Classification via Neural Network Quantum States [58.720142291102135]
In this paper we combine machine-learning tools and the theory of quantum entanglement to perform entanglement classification for multipartite qubit systems in pure states.
We use a parameterisation of quantum systems using artificial neural networks in a restricted Boltzmann machine (RBM) architecture, known as Neural Network Quantum States (NNS)
arXiv Detail & Related papers (2019-12-31T07:40:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.