論文の概要: Beyond Tools: Generative AI as Epistemic Infrastructure in Education
- arxiv url: http://arxiv.org/abs/2504.06928v1
- Date: Wed, 09 Apr 2025 14:35:30 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-10 13:33:12.257486
- Title: Beyond Tools: Generative AI as Epistemic Infrastructure in Education
- Title(参考訳): ツールを超えて: 教育におけるエピステミックインフラストラクチャとしての生成AI
- Authors: Bodong Chen,
- Abstract要約: 生成AIは、世界中の教育インフラに急速に統合される。
本稿では,AIシステムが教育におけるてんかんの基盤として機能するかを考察する。
教師が3次元にまたがる実践に与える影響を分析する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: As generative AI rapidly integrates into educational infrastructures worldwide, it transforms how knowledge gets created, validated, and shared, yet current discourse inadequately addresses its implications as epistemic infrastructure mediating teaching and learning. This paper investigates how AI systems function as epistemic infrastructures in education and their impact on human epistemic agency. Adopting a situated cognition perspective and following a value-sensitive design approach, the study conducts a technical investigation of two representative AI systems in educational settings, analyzing their impact on teacher practice across three dimensions: affordances for skilled epistemic actions, support for epistemic sensitivity, and implications for long-term habit formation. The analysis reveals that current AI systems inadequately support teachers' skilled epistemic actions, insufficiently foster epistemic sensitivity, and potentially cultivate problematic habits that prioritize efficiency over epistemic agency. To address these challenges, the paper recommends recognizing the infrastructural transformation occurring in education, developing AI environments that stimulate skilled actions while upholding epistemic norms, and involving educators in AI design processes -- recommendations aimed at fostering AI integration that aligns with core educational values and maintains human epistemic agency.
- Abstract(参考訳): 生成的AIが世界中の教育インフラに急速に統合されるにつれて、知識の創造、検証、共有の仕方を変えるが、現在の談話は、教育と学習を仲介するてんかんのインフラとして、その意味を不十分に解決する。
本稿では,AIシステムが教育におけるてんかんの基盤として機能し,その人のてんかんに対する影響について検討する。
位置認識の観点を採用し、価値に敏感なデザインアプローチを採用した研究は、教育環境における2つの代表的AIシステムを技術的に調査し、熟練したてんかんアクションの余裕、てんかん感受性のサポート、長期的習慣形成の意義の3つの側面にわたる教師の実践への影響を分析した。
この分析によると、現在のAIシステムは、教師の熟練したてんかんのアクションを不十分にサポートし、十分にててんかんの感受性を育み、また、てんかんのエージェンシーよりも効率を優先する問題のある習慣を育む可能性がある。
これらの課題に対処するため、本論文では、教育におけるインフラ変革の認識、認識基準を維持しながら熟練した行動を刺激するAI環境の開発、AIデザインプロセスにおける教育者の関与、そして、中核的な教育的価値と整合したAI統合を促進することを目的とした推奨事項を推奨する。
関連論文リスト
- Causal Responsibility Attribution for Human-AI Collaboration [62.474732677086855]
本稿では,人間のAIシステムにおける責任を体系的に評価するために,構造因果モデル(SCM)を用いた因果的枠組みを提案する。
2つのケーススタディは、多様な人間とAIのコラボレーションシナリオにおけるフレームワークの適応性を示している。
論文 参考訳(メタデータ) (2024-11-05T17:17:45Z) - Human-Centric eXplainable AI in Education [0.0]
本稿では,教育現場における人間中心型eXplainable AI(HCXAI)について検討する。
学習成果の向上、ユーザ間の信頼の向上、AI駆動ツールの透明性確保における役割を強調している。
ユーザ理解とエンゲージメントを優先するHCXAIシステムの開発のための包括的なフレームワークを概説する。
論文 参考訳(メタデータ) (2024-10-18T14:02:47Z) - Generative AI and Its Impact on Personalized Intelligent Tutoring Systems [0.0]
生成AIは、動的コンテンツ生成、リアルタイムフィードバック、適応学習経路を通じてパーソナライズされた教育を可能にする。
報告では、自動質問生成、カスタマイズされたフィードバック機構、対話システムなどの重要な応用について検討する。
今後の方向性は、マルチモーダルAI統合の潜在的な進歩、学習システムにおける感情的知性、そしてAI駆動型教育の倫理的意味を強調する。
論文 参考訳(メタデータ) (2024-10-14T16:01:01Z) - To accept or not to accept? An IRT-TOE Framework to Understand Educators' Resistance to Generative AI in Higher Education [0.0]
本研究は,教育者が教室で生成人工知能を採用するのを防ぐ障壁を実証的に予測する理論モデルを開発することを目的とする。
我々のアプローチは、IRT(Innovation resistance Theory)フレームワークに基づいており、TOE(Technology-Organization-Environment)フレームワークの構成要素を拡張しています。
論文 参考訳(メタデータ) (2024-07-29T15:59:19Z) - The Rise of Artificial Intelligence in Educational Measurement: Opportunities and Ethical Challenges [2.569083526579529]
教育におけるAIは、妥当性、信頼性、透明性、公平性、公平性に関する倫理的な懸念を提起する。
教育者、政策立案者、組織を含む様々な利害関係者は、教育における倫理的AIの使用を保証するガイドラインを開発した。
本稿では,AIを活用したツールの教育測定における倫理的意義について検討する。
論文 参考訳(メタデータ) (2024-06-27T05:28:40Z) - Generative AI in Education: A Study of Educators' Awareness, Sentiments, and Influencing Factors [2.217351976766501]
本研究は,AI言語モデルに対する教員の経験と態度について考察する。
学習スタイルと生成AIに対する態度の相関は見つからない。
CS教育者は、生成するAIツールの技術的理解にはるかに自信を持っているが、AI生成された仕事を検出する能力にこれ以上自信がない。
論文 参考訳(メタデータ) (2024-03-22T19:21:29Z) - Testing autonomous vehicles and AI: perspectives and challenges from cybersecurity, transparency, robustness and fairness [53.91018508439669]
この研究は、人工知能を自律走行車(AV)に統合する複雑さを探求する
AIコンポーネントがもたらした課題と、テスト手順への影響を調べます。
本稿は、重要な課題を特定し、AV技術におけるAIの研究・開発に向けた今後の方向性を提案する。
論文 参考訳(メタデータ) (2024-02-21T08:29:42Z) - Bringing Generative AI to Adaptive Learning in Education [58.690250000579496]
我々は、生成AIと適応学習の交差研究に光を当てた。
我々は、この連合が教育における次の段階の学習形式の発展に大きく貢献するだろうと論じている。
論文 参考訳(メタデータ) (2024-02-02T23:54:51Z) - Enabling High-Level Machine Reasoning with Cognitive Neuro-Symbolic
Systems [67.01132165581667]
本稿では,認知アーキテクチャを外部のニューロシンボリックコンポーネントと統合することにより,AIシステムにおける高レベル推論を実現することを提案する。
本稿では,ACT-Rを中心としたハイブリッドフレームワークについて紹介し,最近の応用における生成モデルの役割について論じる。
論文 参考訳(メタデータ) (2023-11-13T21:20:17Z) - An interdisciplinary conceptual study of Artificial Intelligence (AI)
for helping benefit-risk assessment practices: Towards a comprehensive
qualification matrix of AI programs and devices (pre-print 2020) [55.41644538483948]
本稿では,インテリジェンスの概念に対処するさまざまな分野の既存の概念を包括的に分析する。
目的は、AIシステムを評価するための共有概念や相違点を特定することである。
論文 参考訳(メタデータ) (2021-05-07T12:01:31Z) - Distributed and Democratized Learning: Philosophy and Research
Challenges [80.39805582015133]
民主化学習(Dem-AI)という新しいデザイン哲学を提案する。
ヒトの社会的グループに触発され、提案されたDem-AIシステムの学習エージェントの専門グループは階層構造で自己組織化され、より効率的に学習タスクを遂行する。
本稿では,様々な学際分野に触発された未来のDem-AIシステムを実現するためのガイドラインとして,参照設計を提案する。
論文 参考訳(メタデータ) (2020-03-18T08:45:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。