論文の概要: Generative AI and Its Impact on Personalized Intelligent Tutoring Systems
- arxiv url: http://arxiv.org/abs/2410.10650v1
- Date: Mon, 14 Oct 2024 16:01:01 GMT
- ステータス: 処理完了
- システム内更新日: 2024-10-29 20:25:02.372897
- Title: Generative AI and Its Impact on Personalized Intelligent Tutoring Systems
- Title(参考訳): ジェネレーティブAIとパーソナライズされたインテリジェントチューニングシステムへの影響
- Authors: Subhankar Maity, Aniket Deroy,
- Abstract要約: 生成AIは、動的コンテンツ生成、リアルタイムフィードバック、適応学習経路を通じてパーソナライズされた教育を可能にする。
報告では、自動質問生成、カスタマイズされたフィードバック機構、対話システムなどの重要な応用について検討する。
今後の方向性は、マルチモーダルAI統合の潜在的な進歩、学習システムにおける感情的知性、そしてAI駆動型教育の倫理的意味を強調する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Generative Artificial Intelligence (AI) is revolutionizing educational technology by enabling highly personalized and adaptive learning environments within Intelligent Tutoring Systems (ITS). This report delves into the integration of Generative AI, particularly large language models (LLMs) like GPT-4, into ITS to enhance personalized education through dynamic content generation, real-time feedback, and adaptive learning pathways. We explore key applications such as automated question generation, customized feedback mechanisms, and interactive dialogue systems that respond to individual learner needs. The report also addresses significant challenges, including ensuring pedagogical accuracy, mitigating inherent biases in AI models, and maintaining learner engagement. Future directions highlight the potential advancements in multimodal AI integration, emotional intelligence in tutoring systems, and the ethical implications of AI-driven education. By synthesizing current research and practical implementations, this report underscores the transformative potential of Generative AI in creating more effective, equitable, and engaging educational experiences.
- Abstract(参考訳): Generative Artificial Intelligence(AI)は、Intelligent Tutoring Systems(ITS)内で高度にパーソナライズされ適応的な学習環境を実現することで、教育技術に革命をもたらす。
本稿では、生成AI、特にGPT-4のような大規模言語モデル(LLM)をITSに統合し、動的コンテンツ生成、リアルタイムフィードバック、適応学習経路を通じてパーソナライズされた教育を強化する。
本稿では,個別の学習者のニーズに応じた質問自動生成,フィードバック機構のカスタマイズ,対話型対話システムなどの重要な応用について検討する。
このレポートは、教育的正確性を保証すること、AIモデル固有のバイアスを軽減すること、学習者のエンゲージメントを維持することなど、重要な課題にも対処している。
今後の方向性は、マルチモーダルAI統合の潜在的な進歩、学習システムにおける感情的知性、そしてAI駆動型教育の倫理的意味を強調する。
この報告は、現在の研究と実践的な実装を合成することによって、より効果的で公平で魅力的な教育経験を生み出すことにおけるジェネレーティブAIの変革の可能性を強調します。
関連論文リスト
- Human-Centric eXplainable AI in Education [0.0]
本稿では,教育現場における人間中心型eXplainable AI(HCXAI)について検討する。
学習成果の向上、ユーザ間の信頼の向上、AI駆動ツールの透明性確保における役割を強調している。
ユーザ理解とエンゲージメントを優先するHCXAIシステムの開発のための包括的なフレームワークを概説する。
論文 参考訳(メタデータ) (2024-10-18T14:02:47Z) - From MOOC to MAIC: Reshaping Online Teaching and Learning through LLM-driven Agents [78.15899922698631]
MAIC(Massive AI-empowered Course)は、LLM駆動のマルチエージェントシステムを活用して、AIが強化された教室を構築するオンライン教育の新たな形態である。
中国一の大学である清華大学で予備的な実験を行う。
論文 参考訳(メタデータ) (2024-09-05T13:22:51Z) - AI-Tutoring in Software Engineering Education [0.7631288333466648]
我々は,GPT-3.5-TurboモデルをAI-TutorとしてAPASアルテミスに組み込むことで,探索的なケーススタディを行った。
この発見は、タイムリーなフィードバックやスケーラビリティといった利点を浮き彫りにしている。
しかし,AI-Tutor を用いた場合,一般的な応答や学習進行抑制に対する学生の懸念も明らかであった。
論文 参考訳(メタデータ) (2024-04-03T08:15:08Z) - Generative AI and Its Educational Implications [0.0]
生成AIが4つの重要なセクションにわたる教育に与える影響について論じる。
我々は、生成型AIが教育の景観を変える方法を提案する。
社会的影響を認め,カリキュラムの更新の必要性を強調した。
論文 参考訳(メタデータ) (2023-12-26T21:29:31Z) - Multimodality of AI for Education: Towards Artificial General
Intelligence [14.121655991753483]
マルチモーダル人工知能(AI)アプローチは、教育的文脈における人工知能(AGI)の実現に向けた道を歩んでいる。
この研究は、認知フレームワーク、高度な知識表現、適応学習機構、多様なマルチモーダルデータソースの統合など、AGIの重要な側面を深く掘り下げている。
本稿は、AGI開発における今後の方向性と課題に関する洞察を提供する、教育におけるマルチモーダルAIの役割の意味についても論じる。
論文 参考訳(メタデータ) (2023-12-10T23:32:55Z) - Artificial Intelligence-Enabled Intelligent Assistant for Personalized
and Adaptive Learning in Higher Education [0.2812395851874055]
本稿では,AIIA(Artificial Intelligence-Enabled Intelligent Assistant)という,高等教育におけるパーソナライズおよび適応学習のための新しいフレームワークを提案する。
AIIAシステムは、高度なAIと自然言語処理(NLP)技術を活用して、対話的で魅力的な学習プラットフォームを構築する。
論文 参考訳(メタデータ) (2023-09-19T19:31:15Z) - The Future of Fundamental Science Led by Generative Closed-Loop
Artificial Intelligence [67.70415658080121]
機械学習とAIの最近の進歩は、技術革新、製品開発、社会全体を破壊している。
AIは、科学的な実践とモデル発見のための高品質なデータの大規模なデータセットへのアクセスがより困難であるため、基礎科学にはあまり貢献していない。
ここでは、科学的な発見に対するAI駆動、自動化、クローズドループアプローチの側面を調査し、調査する。
論文 参考訳(メタデータ) (2023-07-09T21:16:56Z) - Large Language Models Empowered Autonomous Edge AI for Connected
Intelligence [51.269276328087855]
エッジ人工知能(Edge AI)は、コネクテッドインテリジェンスを実現するための有望なソリューションである。
この記事では、ユーザのさまざまな要件を満たすために自動的に組織化し、適応し、最適化する、自律的なエッジAIシステムのビジョンを示す。
論文 参考訳(メタデータ) (2023-07-06T05:16:55Z) - An interdisciplinary conceptual study of Artificial Intelligence (AI)
for helping benefit-risk assessment practices: Towards a comprehensive
qualification matrix of AI programs and devices (pre-print 2020) [55.41644538483948]
本稿では,インテリジェンスの概念に対処するさまざまな分野の既存の概念を包括的に分析する。
目的は、AIシステムを評価するための共有概念や相違点を特定することである。
論文 参考訳(メタデータ) (2021-05-07T12:01:31Z) - Future Trends for Human-AI Collaboration: A Comprehensive Taxonomy of
AI/AGI Using Multiple Intelligences and Learning Styles [95.58955174499371]
我々は、複数の人間の知性と学習スタイルの様々な側面を説明し、様々なAI問題領域に影響を及ぼす可能性がある。
未来のAIシステムは、人間のユーザと互いにコミュニケーションするだけでなく、知識と知恵を効率的に交換できる。
論文 参考訳(メタデータ) (2020-08-07T21:00:13Z) - Distributed and Democratized Learning: Philosophy and Research
Challenges [80.39805582015133]
民主化学習(Dem-AI)という新しいデザイン哲学を提案する。
ヒトの社会的グループに触発され、提案されたDem-AIシステムの学習エージェントの専門グループは階層構造で自己組織化され、より効率的に学習タスクを遂行する。
本稿では,様々な学際分野に触発された未来のDem-AIシステムを実現するためのガイドラインとして,参照設計を提案する。
論文 参考訳(メタデータ) (2020-03-18T08:45:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。