論文の概要: Neural Signal Compression using RAMAN tinyML Accelerator for BCI Applications
- arxiv url: http://arxiv.org/abs/2504.06996v1
- Date: Wed, 09 Apr 2025 16:09:00 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-10 13:05:20.788943
- Title: Neural Signal Compression using RAMAN tinyML Accelerator for BCI Applications
- Title(参考訳): RAMAN microML Accelerator を用いたBCI応用のためのニューラルシグナル圧縮
- Authors: Adithya Krishna, Sohan Debnath, André van Schaik, Mahesh Mehendale, Chetan Singh Thakur,
- Abstract要約: 大規模な脳記録は、オフライン分析と復号のために無線で送信しなければならない膨大な量のデータを生成する。
本稿では,局所場電位(LFP)を圧縮するための圧縮比を最大150とする畳み込みオートエンコーダ(CAE)を用いたニューラル信号圧縮手法を提案する。
RAMANからの圧縮されたニューラルデータは、それぞれ22.6dBと27.4dBの信号対雑音比(SNDR)とR2スコアの0.81と0.94でオフラインに再構成され、2つのサルニューラル記録で評価される。
- 参考スコア(独自算出の注目度): 2.5655109786707717
- License:
- Abstract: High-quality, multi-channel neural recording is indispensable for neuroscience research and clinical applications. Large-scale brain recordings often produce vast amounts of data that must be wirelessly transmitted for subsequent offline analysis and decoding, especially in brain-computer interfaces (BCIs) utilizing high-density intracortical recordings with hundreds or thousands of electrodes. However, transmitting raw neural data presents significant challenges due to limited communication bandwidth and resultant excessive heating. To address this challenge, we propose a neural signal compression scheme utilizing Convolutional Autoencoders (CAEs), which achieves a compression ratio of up to 150 for compressing local field potentials (LFPs). The CAE encoder section is implemented on RAMAN, an energy-efficient tinyML accelerator designed for edge computing, and subsequently deployed on an Efinix Ti60 FPGA with 37.3k LUTs and 8.6k register utilization. RAMAN leverages sparsity in activation and weights through zero skipping, gating, and weight compression techniques. Additionally, we employ hardware-software co-optimization by pruning CAE encoder model parameters using a hardware-aware balanced stochastic pruning strategy, resolving workload imbalance issues and eliminating indexing overhead to reduce parameter storage requirements by up to 32.4%. Using the proposed compact depthwise separable convolutional autoencoder (DS-CAE) model, the compressed neural data from RAMAN is reconstructed offline with superior signal-to-noise and distortion ratios (SNDR) of 22.6 dB and 27.4 dB, along with R2 scores of 0.81 and 0.94, respectively, evaluated on two monkey neural recordings.
- Abstract(参考訳): 高品質でマルチチャネルのニューラル記録は神経科学の研究や臨床応用には不可欠である。
大規模な脳記録は、その後のオフライン分析と復号のために無線で送信しなければならない膨大な量のデータを生成することが多く、特に数百から数千の電極で高密度の皮質内記録を利用する脳-コンピュータインタフェース(BCI)においてである。
しかし、生のニューラルネットワークの送信は、通信帯域が限られ、結果として過度な加熱が生じるため、重大な課題となる。
この課題に対処するために、畳み込みオートエンコーダ(CAE)を用いたニューラル信号圧縮方式を提案し、局所場電位(LFP)を圧縮するための最大150の圧縮比を実現する。
CAEエンコーダ部はエッジコンピューティング用に設計されたエネルギー効率の良い小型MLアクセラレータであるRAMAN上に実装され、その後37.3k LUTと8.6kレジスタのEfinix Ti60 FPGA上に展開された。
RAMANは、ゼロスキッピング、ゲーティング、重量圧縮技術を通じて、アクティベーションと重量の空間性を活用する。
さらに,CAEエンコーダモデルパラメータをハードウェア対応の確率的プルーニング戦略を用いてプルーニングし,負荷不均衡を解消し,インデックス化オーバーヘッドを排除し,パラメータ記憶要求を最大32.4%削減することでハードウェア・ソフトウェア協調最適化を行う。
提案したDepthwise Separable Convolutional Autoencoder (DS-CAE)モデルを用いて、RAMANからの圧縮されたニューラルデータを、それぞれ22.6dBと27.4dBの優れた信号対雑音と歪み比(SNDR)でオフラインに再構成し、それぞれ0.81と0.94のR2スコアを2つのサルニューラル記録で評価する。
関連論文リスト
- Neuromorphic Wireless Split Computing with Multi-Level Spikes [69.73249913506042]
ニューロモルフィックコンピューティングは、スパイキングニューラルネットワーク(SNN)を使用して推論タスクを実行する。
スパイクニューロン間で交換される各スパイクに小さなペイロードを埋め込むことで、エネルギー消費を増大させることなく推論精度を高めることができる。
分割コンピューティング — SNNを2つのデバイスに分割する — は、有望なソリューションだ。
本稿では,マルチレベルSNNを用いたニューロモルフィック無線分割コンピューティングアーキテクチャの総合的研究について述べる。
論文 参考訳(メタデータ) (2024-11-07T14:08:35Z) - Accelerating Error Correction Code Transformers [56.75773430667148]
本稿では,トランスを用いたデコーダの高速化手法を提案する。
最新のハードウェアでは、90%の圧縮比を実現し、算術演算エネルギー消費を少なくとも224倍削減する。
論文 参考訳(メタデータ) (2024-10-08T11:07:55Z) - Efficient and accurate neural field reconstruction using resistive memory [52.68088466453264]
デジタルコンピュータにおける従来の信号再構成手法は、ソフトウェアとハードウェアの両方の課題に直面している。
本稿では,スパース入力からの信号再構成のためのソフトウェア・ハードウェア協調最適化を用いた体系的アプローチを提案する。
この研究は、AI駆動の信号復元技術を進歩させ、将来の効率的で堅牢な医療AIと3Dビジョンアプリケーションへの道を開く。
論文 参考訳(メタデータ) (2024-04-15T09:33:09Z) - A Cryogenic Memristive Neural Decoder for Fault-tolerant Quantum Error Correction [0.0]
インメモリ・クロスバー(IMC)アーキテクチャに基づくニューラルデコーダの設計と解析を行う。
ハードウェアを意識したリトレーニング手法を開発し、フィデリティ損失を軽減する。
この研究は、フォールトトレラントQECの統合のためのスケーラブルで高速で低消費電力のMCCハードウェアへの経路を提供する。
論文 参考訳(メタデータ) (2023-07-18T17:46:33Z) - NAF: Neural Attenuation Fields for Sparse-View CBCT Reconstruction [79.13750275141139]
本稿では,スパースビューCBCT再構成のための新規かつ高速な自己教師型ソリューションを提案する。
所望の減衰係数は、3次元空間座標の連続関数として表現され、完全に接続されたディープニューラルネットワークによってパラメータ化される。
ハッシュ符号化を含む学習ベースのエンコーダが採用され、ネットワークが高周波の詳細をキャプチャするのに役立つ。
論文 参考訳(メタデータ) (2022-09-29T04:06:00Z) - Reducing Redundancy in the Bottleneck Representation of the Autoencoders [98.78384185493624]
オートエンコーダは教師なしニューラルネットワークの一種であり、様々なタスクを解くのに使用できる。
本稿では,ボトルネック表現における特徴冗長性を明示的に罰する手法を提案する。
我々は,3つの異なるデータセットを用いた次元削減,MNISTデータセットを用いた画像圧縮,ファッションMNISTを用いた画像デノナイズという,さまざまなタスクにまたがってアプローチを検証した。
論文 参考訳(メタデータ) (2022-02-09T18:48:02Z) - Rate Distortion Characteristic Modeling for Neural Image Compression [59.25700168404325]
エンドツーエンドの最適化機能は、ニューラルイメージ圧縮(NIC)の優れた損失圧縮性能を提供する。
異なるモデルは、R-D空間の異なる点に到達するために訓練される必要がある。
深層ネットワークと統計モデルを用いてNICのR-D挙動を記述するために,本質的な数学的関数の定式化に努めている。
論文 参考訳(メタデータ) (2021-06-24T12:23:05Z) - Lightweight Compression of Intermediate Neural Network Features for
Collaborative Intelligence [32.03465747357384]
協調インテリジェンスアプリケーションでは、ディープニューラルネットワーク(DNN)の一部が携帯電話やエッジデバイスなどの軽量デバイスにデプロイされます。
本稿では,分割DNNの中間層によって出力される特徴を量子化し圧縮する,新しい軽量圧縮技術を提案する。
論文 参考訳(メタデータ) (2021-05-15T00:10:12Z) - Lightweight compression of neural network feature tensors for
collaborative intelligence [32.03465747357384]
協調インテリジェンスアプリケーションでは、ディープニューラルネットワーク(DNN)の一部は、携帯電話やエッジデバイスなどの比較的低い複雑さのデバイスにデプロイされます。
本稿では,スプリットdnn層のアクティベーションをコード化するために設計された新しい軽量圧縮技術を提案する。
論文 参考訳(メタデータ) (2021-05-12T23:41:35Z) - A reconfigurable neural network ASIC for detector front-end data
compression at the HL-LHC [0.40690419770123604]
ニューラルネットワークのオートエンコーダモデルを放射線耐性ASICに実装して、損失のあるデータ圧縮を行うことができる。
これは、粒子物理学アプリケーション用に設計されたニューラルネットワークの耐放射線性オンディテクタASIC実装である。
論文 参考訳(メタデータ) (2021-05-04T18:06:23Z) - Convolutional-Recurrent Neural Networks on Low-Power Wearable Platforms
for Cardiac Arrhythmia Detection [0.18459705687628122]
マイクロコントローラと低消費電力プロセッサで動作するニューラルネットワークの推論に焦点を当てる。
心不整脈を検出・分類するために既存の畳み込みリカレントニューラルネットワークを適用した。
メモリフットプリントは195.6KB、スループットは33.98MOps/sである。
論文 参考訳(メタデータ) (2020-01-08T10:35:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。