論文の概要: Guarding Digital Privacy: Exploring User Profiling and Security Enhancements
- arxiv url: http://arxiv.org/abs/2504.07107v1
- Date: Mon, 17 Mar 2025 10:56:46 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-13 07:22:42.029940
- Title: Guarding Digital Privacy: Exploring User Profiling and Security Enhancements
- Title(参考訳): デジタルプライバシの保護 - ユーザプロファイリングとセキュリティ強化を探る
- Authors: Rishika Kohli, Shaifu Gupta, Manoj Singh Gaur,
- Abstract要約: この記事では、ユーザプロファイリングに関する知識の統合、さまざまなアプローチと関連する課題について検討する。
ユーザデータを共有している2つの企業のレンズと、インドで人気の高い18のAndroidアプリケーションの分析を通じて、この記事はプライバシーの脆弱性を明らかにしている。
本稿では,意思決定木とニューラルネットワークを用いた機械学習フレームワークを提案する。
- 参考スコア(独自算出の注目度): 0.12289361708127873
- License:
- Abstract: User profiling, the practice of collecting user information for personalized recommendations, has become widespread, driving progress in technology. However, this growth poses a threat to user privacy, as devices often collect sensitive data without their owners' awareness. This article aims to consolidate knowledge on user profiling, exploring various approaches and associated challenges. Through the lens of two companies sharing user data and an analysis of 18 popular Android applications in India across various categories, including $\textit{Social, Education, Entertainment, Travel, Shopping and Others}$, the article unveils privacy vulnerabilities. Further, the article propose an enhanced machine learning framework, employing decision trees and neural networks, that improves state-of-the-art classifiers in detecting personal information exposure. Leveraging the XAI (explainable artificial intelligence) algorithm LIME (Local Interpretable Model-agnostic Explanations), it enhances interpretability, crucial for reliably identifying sensitive data. Results demonstrate a noteworthy performance boost, achieving a $75.01\%$ accuracy with a reduced training time of $3.62$ seconds for neural networks. Concluding, the paper suggests research directions to strengthen digital security measures.
- Abstract(参考訳): パーソナライズされたレコメンデーションのためのユーザ情報収集のプラクティスであるユーザプロファイリングが広まり、技術の進歩を促している。
しかし、デバイスは所有者の意識なしに機密データを収集することが多いため、この成長はユーザーのプライバシーに脅威をもたらす。
この記事では、ユーザプロファイリングに関する知識の統合、さまざまなアプローチと関連する課題について検討する。
ユーザーデータを共有している2つの企業のレンズと、インドで人気の高い18のAndroidアプリケーションの分析によって、$\textit{Social, Education, Entertainment, Travel, Shopping and Othersなど、さまざまなカテゴリーにまたがっている。
さらに,決定木とニューラルネットワークを用いた機械学習フレームワークを提案する。
XAI(説明可能な人工知能)アルゴリズムのLIME(Local Interpretable Model-Agnostic Explanations)を活用して、解釈可能性を高め、機密データを確実に識別する。
結果は注目すべきパフォーマンス向上を示し、ニューラルネットワークのトレーニング時間を3.62ドル秒削減した75.01ドル%の精度を達成した。
結論として,デジタルセキュリティ対策の強化に向けた研究の方向性を提案する。
関連論文リスト
- Navigating AI to Unpack Youth Privacy Concerns: An In-Depth Exploration and Systematic Review [0.0]
この体系的な文献レビューは、人工知能(AI)システムにおけるプライバシーに関する若いデジタル市民の認識、関心、期待について調査する。
データ抽出は、プライバシの懸念、データ共有のプラクティス、プライバシとユーティリティのバランス、AIの信頼要因、個人データのユーザコントロールを強化する戦略に焦点を当てている。
発見は、個人情報のコントロールの欠如、AIによるデータの誤用の可能性、データ漏洩や不正アクセスの恐れなど、若いユーザーの間で重要なプライバシー上の懸念を浮き彫りにしている。
論文 参考訳(メタデータ) (2024-12-20T22:00:06Z) - Fingerprinting and Tracing Shadows: The Development and Impact of Browser Fingerprinting on Digital Privacy [55.2480439325792]
ブラウザのフィンガープリントは、クッキーのような従来の方法なしでオンラインでユーザーを特定し、追跡するテクニックとして成長している。
本稿では, 各種指紋認証技術について概説し, 収集データのエントロピーと特異性を解析する。
論文 参考訳(メタデータ) (2024-11-18T20:32:31Z) - NAP^2: A Benchmark for Naturalness and Privacy-Preserving Text Rewriting by Learning from Human [55.20137833039499]
我々は,人間によって使用される2つの共通戦略を用いて,機密テキストの衛生化を提案する。
我々は,クラウドソーシングと大規模言語モデルの利用を通じて,NAP2という最初のコーパスをキュレートする。
論文 参考訳(メタデータ) (2024-06-06T05:07:44Z) - Privacy-preserving Optics for Enhancing Protection in Face De-identification [60.110274007388135]
この脆弱性を解決するために,ハードウェアレベルの顔識別手法を提案する。
また、プライバシ保存画像、フェイスヒートマップ、およびパブリックデータセットからの参照顔イメージを入力として、新しい顔を生成する匿名化フレームワークを提案する。
論文 参考訳(メタデータ) (2024-03-31T19:28:04Z) - TeD-SPAD: Temporal Distinctiveness for Self-supervised
Privacy-preservation for video Anomaly Detection [59.04634695294402]
人間の監視のないビデオ異常検出(VAD)は複雑なコンピュータビジョンタスクである。
VADのプライバシー漏洩により、モデルは人々の個人情報に関連する不必要なバイアスを拾い上げ、増幅することができる。
本稿では,視覚的プライベート情報を自己管理的に破壊する,プライバシーに配慮したビデオ異常検出フレームワークTeD-SPADを提案する。
論文 参考訳(メタデータ) (2023-08-21T22:42:55Z) - Privacy Risks in Reinforcement Learning for Household Robots [42.675213619562975]
プライバシーは、ロボットが実質的な個人情報にアクセスすることによって、具体化されたAIの領域における重要な関心事として浮上する。
本稿では,値に基づくアルゴリズムと勾配に基づくアルゴリズムのトレーニングプロセスに対する攻撃を提案し,状態,行動,監督信号の再構成に勾配インバージョンを利用する。
論文 参考訳(メタデータ) (2023-06-15T16:53:26Z) - Protecting User Privacy in Online Settings via Supervised Learning [69.38374877559423]
我々は、教師付き学習を活用する、オンラインプライバシ保護に対するインテリジェントなアプローチを設計する。
ユーザのプライバシを侵害する可能性のあるデータ収集を検出してブロックすることにより、ユーザに対してある程度のディジタルプライバシを復元することが可能になります。
論文 参考訳(メタデータ) (2023-04-06T05:20:16Z) - Leaking Sensitive Financial Accounting Data in Plain Sight using Deep
Autoencoder Neural Networks [1.9659095632676094]
センシティブな会計データを漏洩させる「実世界の脅威モデル」を提案する。
3つのニューラルネットワークで構成された深層ステガノグラフィープロセスは、そのデータを日々の目立たないイメージに隠すように訓練できる。
論文 参考訳(メタデータ) (2020-12-13T17:29:53Z) - Differentially Private and Fair Deep Learning: A Lagrangian Dual
Approach [54.32266555843765]
本稿では,個人の機密情報のプライバシを保護するとともに,非差別的予測器の学習を可能にするモデルについて検討する。
この方法は、微分プライバシーの概念と、公正性制約を満たすニューラルネットワークの設計にラグランジアン双対性(Lagrangian duality)を用いることに依存している。
論文 参考訳(メタデータ) (2020-09-26T10:50:33Z) - Privacy Adversarial Network: Representation Learning for Mobile Data
Privacy [33.75500773909694]
モバイルユーザのためのクラウドベースのインテリジェントサービスの増加は、プロバイダに送信するユーザデータを要求している。
以前の作業では、例えばノイズを追加して識別情報を削除したり、匿名化された特徴などのデータから抽出された表現を送信したりするといった、データの難読化が行われていた。
私たちは、敵対的な学習を活用して、プライバシとユーティリティのバランスを改善する。
論文 参考訳(メタデータ) (2020-06-08T09:42:04Z) - Privacy-Preserving Boosting in the Local Setting [17.375582978294105]
機械学習では、複数のベース学習者と優れた学習者を組み合わせるように設計された最も一般的な方法の1つがブースティングである。
ビッグデータ時代において、個人や団体によって保持されるデータ(個人画像、閲覧履歴、国勢調査情報など)は、より機密性の高い情報を含む傾向にある。
ローカル微分プライバシーは、データ所有者に強力な保証を提供する効果的なプライバシー保護アプローチとして提案されている。
論文 参考訳(メタデータ) (2020-02-06T04:48:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。