論文の概要: A millisecond integrated quantum memory for photonic qubits
- arxiv url: http://arxiv.org/abs/2504.07348v1
- Date: Thu, 10 Apr 2025 00:15:18 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-18 22:23:17.171181
- Title: A millisecond integrated quantum memory for photonic qubits
- Title(参考訳): フォトニック量子ビットのためのミリ秒積分量子メモリ
- Authors: Yu-Ping Liu, Zhong-Wen Ou, Tian-Xiang Zhu, Ming-Xu Su, Chao Liu, Yong-Jian Han, Zong-Quan Zhou, Chuan-Feng Li, Guang-Can Guo,
- Abstract要約: 量子メモリの統合操作は、低消費電力でスケーラブルなアプリケーションを可能にする。
本稿では、151Eu3+:Y2SiO5結晶で作製されたレーザー光導波路をベースとした1.021msのフォトニック量子ビットの量子記憶を実証する。
- 参考スコア(独自算出の注目度): 0.8699241399244759
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Quantum memories for light are essential building blocks for quantum repeaters and quantum networks. Integrated operations of quantum memories could enable scalable application with low-power consumption. However, the photonic quantum storage lifetime in integrated optical waveguide has so far been limited to tens of microseconds, falling short of the requirements for practical applications. Here, we demonstrate quantum storage of photonic qubits for 1.021 ms based on a laser-written optical waveguide fabricated in a 151Eu3+:Y2SiO5 crystal. Spin dephasing of 151Eu3+ is mitigated through dynamical decoupling applied via on-chip electric waveguides and we obtain a storage efficiency of 12.0(0.5)% at 1.021 ms, which is a demonstration of integrated quantum memories that outperforms the efficiency of a simple fiber delay line. Such long-lived waveguide-based quantum memory could support applications in quantum repeaters, and further combination with critical magnetic fields could enable potential application as transportable quantum memories.
- Abstract(参考訳): 光の量子記憶は、量子リピータや量子ネットワークにとって必須の構成要素である。
量子メモリの統合操作は、低消費電力でスケーラブルなアプリケーションを可能にする。
しかし、集積光導波路におけるフォトニック量子記憶寿命は、これまでのところ数十マイクロ秒に制限されており、実用上の要件には満たされていない。
本稿では、151Eu3+:Y2SiO5結晶で作製されたレーザー光導波路をベースとした1.021msのフォトニック量子ビットの量子記憶を実証する。
151Eu3+のスピン Dephasingは、オンチップ電気導波路を介して適用された動的デカップリングにより緩和され、1.021msで12.0(0.5)%の記憶効率が得られる。
このような長寿命の導波管ベースの量子メモリは、量子リピータの応用をサポートする可能性があり、臨界磁場とさらに組み合わせることで、輸送可能な量子メモリとして応用できる可能性がある。
関連論文リスト
- Light Storage in Light Cages: A Scalable Platform for Multiplexed Quantum Memories [0.8539703554674337]
3Dプリント中空コア導波路に基づくセシウム(Cs)量子メモリにおけるコヒーレント光パルスの減衰を実証する。
我々は,Cs蒸気セル内の1つのチップに複数のLCメモリを組み込むことに成功し,全デバイスで一貫した性能を実現した。
これらの結果は、空間的に多重化された量子メモリへの顕著な進歩を示し、前例のないレベルまでメモリ統合を増大させる可能性があることを示している。
論文 参考訳(メタデータ) (2025-03-28T13:35:12Z) - Quantum Optical Memory for Entanglement Distribution [52.77024349608834]
長距離における量子状態の絡み合いは、量子コンピューティング、量子通信、および量子センシングを増強することができる。
過去20年間で、高忠実度、高効率、長期保存、有望な多重化機能を備えた量子光学記憶が開発された。
論文 参考訳(メタデータ) (2023-04-19T03:18:51Z) - An integrated microwave-to-optics interface for scalable quantum
computing [47.187609203210705]
シリコンフォトニックキャビティに結合した超伝導共振器を用いた集積トランスデューサの新しい設計法を提案する。
上記の条件をすべて同時に実現するためのユニークな性能とポテンシャルを実験的に実証する。
デバイスは50オーム伝送ラインに直接接続し、単一のチップ上で多数のトランスデューサに容易にスケールできる。
論文 参考訳(メタデータ) (2022-10-27T18:05:01Z) - Tunable photon-mediated interactions between spin-1 systems [68.8204255655161]
我々は、光子を媒介とする効果的なスピン-1系間の相互作用に、光遷移を持つマルチレベルエミッタを利用する方法を示す。
本結果は,空洞QEDおよび量子ナノフォトニクス装置で利用可能な量子シミュレーションツールボックスを拡張した。
論文 参考訳(メタデータ) (2022-06-03T14:52:34Z) - Field-deployable Quantum Memory for Quantum Networking [62.72060057360206]
実世界の展開とスケーリングの課題に対応するために設計された量子メモリを提示する。
メモリ技術は、温かいルビジウム蒸気を記憶媒体として利用し、室温で動作する。
我々は,高忠実度検索(95%)と低演算誤差(10-2)$を,単一光子レベルの量子メモリ操作に対して160$mu s$の記憶時間で示す。
論文 参考訳(メタデータ) (2022-05-26T00:33:13Z) - Picosecond Pulsed Squeezing in Thin-Film Lithium Niobate Strip-Loaded
Waveguides at Telecommunication Wavelengths [52.77024349608834]
薄膜ニオブ酸リチウム帯電導波路におけるピコ秒パルスの4次スケズ化を示す。
この研究は、ブロードバンドシーズアプリケーションのためのストリップロードブロードバンド導波路プラットフォームの可能性を強調している。
論文 参考訳(メタデータ) (2022-04-12T10:42:19Z) - Slowing down light in a qubit metamaterial [98.00295925462214]
マイクロ波領域の超伝導回路は 未だにそのような装置を欠いている
共振導波路に結合した8量子ビットからなる超伝導メタマテリアルにおいて、電磁波の減速を実証した。
本研究は, 超伝導回路の高柔軟性を実証し, カスタムバンド構造を実現することを目的とした。
論文 参考訳(メタデータ) (2022-02-14T20:55:10Z) - Storage and analysis of light-matter entanglement in a fibre-integrated
system [48.7576911714538]
我々は,光子に絡み合った光ファイバー集積量子メモリを電気通信波長で示す。
本発明の記憶装置は、希土類ドープ固体の導波路に書き込まれたファイバピグテールレーザをベースとし、全繊維安定なメモリのアローディングを可能にする。
本研究の結果は, 集積デバイスを用いた量子ネットワークに向けた重要な一歩となる, 光・光・光の絡み合いの記憶における保存時間と効率の面で, 桁違いの進歩を特徴としている。
論文 参考訳(メタデータ) (2022-01-10T14:28:04Z) - On-Demand Storage and Retrieval of Microwave Photons Using a
Superconducting Multiresonator Quantum Memory [8.02214511485348]
量子状態を忠実に保存し、要求に応じて取り出す量子メモリは、量子情報科学に広く応用されている。
我々は、周波数可変コプラナー伝送線路(CPW)共振器からなる超伝導多共振器量子メモリを実装した。
時間ビンフライングキュービットのオンデマンドストレージと検索を実演する。
論文 参考訳(メタデータ) (2021-11-10T09:38:09Z) - On-chip single-photon subtraction by individual silicon vacancy centers
in a laser-written diamond waveguide [48.7576911714538]
レーザーによるダイヤモンドフォトニクスは3次元の加工能力と、光ファイバー技術と一致する大きなモード場直径を提供する。
そこで我々は,大きな数値開口光学を用いて,単一の浅層実装シリコン空孔中心の励起を組み合わせ,大きな協調性を実現する。
我々は、単一エミッタの量子効率の低いバウンダリとして13%のベータ係数と0.153のコオペラティティティを持つ単一エミッタの絶滅測定を実証した。
論文 参考訳(メタデータ) (2021-11-02T16:01:15Z) - An integrated whispering-gallery-mode resonator for solid-state coherent
quantum photonics [6.082529164787429]
我々は,光子をコヒーレントにルートする自己組立量子ドットを含む集積マイクロディスクキャビティについて報告する。
この統合システムは, ドロップポートとバスポートの間で光子を協調的に再帰することができることを示す。
このアプローチの長所と短所について議論し、量子デバイスの効率を高めるためにどのように使用できるかに焦点を当てる。
論文 参考訳(メタデータ) (2021-07-26T12:51:39Z) - On-demand quantum storage of photonic qubits in an on-chip waveguide [1.545577144935917]
フォトニック量子メモリは量子情報処理(QIP)のコア要素である
ここでは,151ドルEu$3+$:Y$$$SiO$_5$の結晶表面上のオンチップ導波路メモリにおける時間ビン量子ビットのオンデマンドストレージについて報告する。
99.3%pm0.2%$の量子ビット記憶密度は、1パルスあたり0.5光子の入力で得られる。
論文 参考訳(メタデータ) (2020-09-03T16:56:35Z) - Near-ideal spontaneous photon sources in silicon quantum photonics [55.41644538483948]
集積フォトニクスは量子情報処理のための堅牢なプラットフォームである。
非常に区別がつかず純粋な単一の光子の源は、ほぼ決定的か高い効率で隠蔽されている。
ここでは、これらの要件を同時に満たすオンチップ光子源を実証する。
論文 参考訳(メタデータ) (2020-05-19T16:46:44Z) - Efficient quantum memory for single photon polarization qubits [0.21670084965090575]
量子メモリは、長距離量子通信と大規模量子計算を実現するための重要なインターフェースである。
本稿では, 単一光子偏光量子ビットに対する量子メモリの実証を85%, 忠実度99%で報告する。
単一チャネル量子メモリでは、単一光子時間波形の保存と取得に最適化された効率は、90.6%に達する。
論文 参考訳(メタデータ) (2020-04-07T04:39:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。