論文の概要: Automating quantum feature map design via large language models
- arxiv url: http://arxiv.org/abs/2504.07396v1
- Date: Thu, 10 Apr 2025 02:27:45 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-11 12:22:57.895742
- Title: Automating quantum feature map design via large language models
- Title(参考訳): 大規模言語モデルによる量子特徴写像設計の自動化
- Authors: Kenya Sakka, Kosuke Mitarai, Keisuke Fujii,
- Abstract要約: 本稿では,大規模言語モデルを用いて量子特徴写像を自律的に生成,評価,洗練するエージェントシステムを提案する。
MNISTデータセットの実験では、人間の介入なしに特徴マップを発見し、洗練することができる。
- 参考スコア(独自算出の注目度): 0.8009842832476994
- License:
- Abstract: Quantum feature maps are a key component of quantum machine learning, encoding classical data into quantum states to exploit the expressive power of high-dimensional Hilbert spaces. Despite their theoretical promise, designing quantum feature maps that offer practical advantages over classical methods remains an open challenge. In this work, we propose an agentic system that autonomously generates, evaluates, and refines quantum feature maps using large language models. The system consists of five component: Generation, Storage, Validation, Evaluation, and Review. Using these components, it iteratively improves quantum feature maps. Experiments on the MNIST dataset show that it can successfully discover and refine feature maps without human intervention. The best feature map generated outperforms existing quantum baselines and achieves competitive accuracy compared to classical kernels across MNIST, Fashion-MNIST, and CIFAR-10. Our approach provides a framework for exploring dataset-adaptive quantum features and highlights the potential of LLM-driven automation in quantum algorithm design.
- Abstract(参考訳): 量子特徴写像は量子機械学習の重要な要素であり、古典的なデータを量子状態に符号化し、高次元ヒルベルト空間の表現力を利用する。
その理論的な約束にもかかわらず、古典的手法よりも実用的な利点を提供する量子特徴写像を設計することは、未解決の課題である。
本研究では,大規模言語モデルを用いて量子特徴写像を自律的に生成,評価,洗練するエージェントシステムを提案する。
このシステムは、生成、保存、検証、評価、レビューの5つのコンポーネントで構成されている。
これらのコンポーネントを使用して、量子特徴写像を反復的に改善する。
MNISTデータセットの実験では、人間の介入なしに特徴マップを発見し、洗練することができる。
最も優れた特徴マップは、既存の量子ベースラインより優れ、MNIST、Fashion-MNIST、CIFAR-10をまたいだ古典的カーネルと比較して、競争精度が向上する。
我々のアプローチは、データセット適応型量子特徴を探索するためのフレームワークを提供し、量子アルゴリズム設計におけるLLM駆動の自動化の可能性を強調している。
関連論文リスト
- Quantum Transfer Learning for MNIST Classification Using a Hybrid Quantum-Classical Approach [0.0]
本研究は、画像分類タスクにおける量子コンピューティングと古典的機械学習の統合について検討する。
両パラダイムの強みを生かしたハイブリッド量子古典的アプローチを提案する。
実験結果から、ハイブリッドモデルが量子コンピューティングと古典的手法を統合する可能性を示す一方で、量子結果に基づいて訓練された最終モデルの精度は、圧縮された特徴に基づいて訓練された古典的モデルよりも低いことが示唆された。
論文 参考訳(メタデータ) (2024-08-05T22:16:27Z) - A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
我々は,コ・テンク (co-TenQu) と呼ばれる古典量子アーキテクチャを導入する。
Co-TenQuは古典的なディープニューラルネットワークを41.72%まで向上させる。
他の量子ベースの手法よりも1.9倍も優れており、70.59%少ない量子ビットを使用しながら、同様の精度を達成している。
論文 参考訳(メタデータ) (2024-02-23T14:09:41Z) - Neural auto-designer for enhanced quantum kernels [59.616404192966016]
本稿では,問題固有の量子特徴写像の設計を自動化するデータ駆動型手法を提案する。
私たちの研究は、量子機械学習の進歩におけるディープラーニングの実質的な役割を強調します。
論文 参考訳(メタデータ) (2024-01-20T03:11:59Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
本研究では,高エネルギー物理における量子データ学習の実践的問題への適用性について検討する。
我々は、量子畳み込みニューラルネットワークに基づくアンサッツを用いて、基底状態の量子位相を認識できることを数値的に示す。
これらのベンチマークで示された非自明な学習特性の観察は、高エネルギー物理学における量子データ学習アーキテクチャのさらなる探求の動機となる。
論文 参考訳(メタデータ) (2023-06-29T18:00:01Z) - Feature Map for Quantum Data in Classification [2.2940141855172036]
量子特徴写像は、量子資源を機械学習アルゴリズムに燃やすことにより、量子状態のヒルベルト空間を持つインスタンスに対応する。
本稿では,教師付き学習アルゴリズムを改善するために,量子状態の確率論的操作として,量子データの特徴マップを提案する。
論文 参考訳(メタデータ) (2023-03-28T01:17:08Z) - QuanGCN: Noise-Adaptive Training for Robust Quantum Graph Convolutional
Networks [124.7972093110732]
本稿では,ノード間の局所的なメッセージパッシングをクロスゲート量子演算のシーケンスで学習する量子グラフ畳み込みネットワーク(QuanGCN)を提案する。
現代の量子デバイスから固有のノイズを緩和するために、ノードの接続をスパーズするためにスパース制約を適用します。
我々のQuanGCNは、いくつかのベンチマークグラフデータセットの古典的なアルゴリズムよりも機能的に同等か、さらに優れている。
論文 参考訳(メタデータ) (2022-11-09T21:43:16Z) - Re-QGAN: an optimized adversarial quantum circuit learning framework [0.0]
生成モデルの枠組みとして実ヒルベルト空間を用いる量子生成逆ネットワーク設計を提案する。
ステレオ投影法により古典情報をエンコードし,正規化手順を使わずに古典的領域全体を利用できるようにする。
このアーキテクチャは、浅い深さの量子回路を維持しながら、最先端の量子生成対向性能を向上させる。
論文 参考訳(メタデータ) (2022-08-03T15:52:27Z) - Trainable Discrete Feature Embeddings for Variational Quantum Classifier [4.40450723619303]
我々は、QRAC(Quantum Random Access Coding)を用いて、より少ない量子ビットで離散的な特徴をマップする方法を示す。
QRACと最近提案された量子量学習(quantum metric learning)と呼ばれる量子特徴マップのトレーニング戦略を組み合わせることで、個別の特徴をトレーニング可能な量子回路に埋め込む新しい手法を提案する。
論文 参考訳(メタデータ) (2021-06-17T12:02:01Z) - Nearest Centroid Classification on a Trapped Ion Quantum Computer [57.5195654107363]
我々は,古典的データを量子状態に効率よくロードし,距離推定を行う手法を用いて,量子近接Centroid分類器を設計する。
MNIST手書き桁データセットの古典的最寄りのセントロイド分類器の精度と8次元合成データの最大100%の精度とを一致させ,11量子ビットトラップイオン量子マシン上で実験的に実証した。
論文 参考訳(メタデータ) (2020-12-08T01:10:30Z) - Experimental Quantum Generative Adversarial Networks for Image
Generation [93.06926114985761]
超伝導量子プロセッサを用いた実世界の手書き桁画像の学習と生成を実験的に行う。
我々の研究は、短期量子デバイス上での高度な量子生成モデル開発のためのガイダンスを提供する。
論文 参考訳(メタデータ) (2020-10-13T06:57:17Z) - Universal Approximation Property of Quantum Machine Learning Models in
Quantum-Enhanced Feature Spaces [0.0]
本研究では, 領域分割における量子特徴写像の能力について検討する。
我々の研究は、量子特徴写像に基づく機械学習アルゴリズムが幅広い機械学習タスクを扱えるように、重要な理論的分析を可能にする。
論文 参考訳(メタデータ) (2020-09-01T09:09:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。