論文の概要: Feature Map for Quantum Data in Classification
- arxiv url: http://arxiv.org/abs/2303.15665v2
- Date: Mon, 3 Jun 2024 05:56:32 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-04 23:35:51.752160
- Title: Feature Map for Quantum Data in Classification
- Title(参考訳): 分類における量子データの特徴マップ
- Authors: Hyeokjea Kwon, Hojun Lee, Joonwoo Bae,
- Abstract要約: 量子特徴写像は、量子資源を機械学習アルゴリズムに燃やすことにより、量子状態のヒルベルト空間を持つインスタンスに対応する。
本稿では,教師付き学習アルゴリズムを改善するために,量子状態の確率論的操作として,量子データの特徴マップを提案する。
- 参考スコア(独自算出の注目度): 2.2940141855172036
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: The kernel trick in supervised learning signifies transformations of an inner product by a feature map, which then restructures training data in a larger Hilbert space according to an endowed inner product. A quantum feature map corresponds to an instance with a Hilbert space of quantum states by fueling quantum resources to machine learning algorithms. In this work, we point out that the quantum state space is specific such that a measurement postulate characterizes an inner product and that manipulation of quantum states prepared from classical data cannot enhance the distinguishability of data points. We present a feature map for quantum data as a probabilistic manipulation of quantum states to improve supervised learning algorithms.
- Abstract(参考訳): 教師付き学習におけるカーネルトリックは、特徴写像によって内部積の変換を示し、与えられた内部積に従ってより大きなヒルベルト空間でのトレーニングデータを再構成する。
量子特徴写像は、量子資源を機械学習アルゴリズムに燃やすことにより、量子状態のヒルベルト空間を持つインスタンスに対応する。
本研究では, 量子状態空間は, 測定仮定が内積を特徴づけること, 古典的データから生成した量子状態の操作がデータ点の識別可能性を高めることができないことを指摘した。
本稿では,教師付き学習アルゴリズムを改善するために,量子状態の確率論的操作として,量子データの特徴マップを提案する。
関連論文リスト
- Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
d可変RZゲートとG-dクリフォードゲートを含む量子回路を与えられた場合、学習者は純粋に古典的な推論を行い、その線形特性を効率的に予測できるだろうか?
我々は、d で線形にスケーリングするサンプルの複雑さが、小さな予測誤差を達成するのに十分であり、対応する計算の複雑さは d で指数関数的にスケールすることを証明する。
我々は,予測誤差と計算複雑性をトレードオフできるカーネルベースの学習モデルを考案し,多くの実践的な環境で指数関数からスケーリングへ移行した。
論文 参考訳(メタデータ) (2024-08-22T08:21:28Z) - The curse of random quantum data [62.24825255497622]
量子データのランドスケープにおける量子機械学習の性能を定量化する。
量子機械学習におけるトレーニング効率と一般化能力は、量子ビットの増加に伴い指数関数的に抑制される。
この結果は量子カーネル法と量子ニューラルネットワークの広帯域限界の両方に適用できる。
論文 参考訳(メタデータ) (2024-08-19T12:18:07Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
本研究では,高エネルギー物理における量子データ学習の実践的問題への適用性について検討する。
我々は、量子畳み込みニューラルネットワークに基づくアンサッツを用いて、基底状態の量子位相を認識できることを数値的に示す。
これらのベンチマークで示された非自明な学習特性の観察は、高エネルギー物理学における量子データ学習アーキテクチャのさらなる探求の動機となる。
論文 参考訳(メタデータ) (2023-06-29T18:00:01Z) - Noisy Quantum Kernel Machines [58.09028887465797]
量子学習マシンの新たなクラスは、量子カーネルのパラダイムに基づくものである。
消散と脱コヒーレンスがパフォーマンスに与える影響について検討する。
量子カーネルマシンでは,デコヒーレンスや散逸を暗黙の正規化とみなすことができる。
論文 参考訳(メタデータ) (2022-04-26T09:52:02Z) - Q-means using variational quantum feature embedding [0.9572675949441442]
変分回路の目的は、量子的特徴を持つヒルベルト空間のクラスターを極大に分離することである。
量子回路の出力は、特定のクラスタに属する全ての量子状態の重ね合わせを表す特徴的なクラスター量子状態である。
期待値の勾配は、変動回路のパラメータを最適化し、より良い量子特徴写像を学習するために用いられる。
論文 参考訳(メタデータ) (2021-12-11T13:00:51Z) - Trainable Discrete Feature Embeddings for Variational Quantum Classifier [4.40450723619303]
我々は、QRAC(Quantum Random Access Coding)を用いて、より少ない量子ビットで離散的な特徴をマップする方法を示す。
QRACと最近提案された量子量学習(quantum metric learning)と呼ばれる量子特徴マップのトレーニング戦略を組み合わせることで、個別の特徴をトレーニング可能な量子回路に埋め込む新しい手法を提案する。
論文 参考訳(メタデータ) (2021-06-17T12:02:01Z) - Tree tensor network classifiers for machine learning: from
quantum-inspired to quantum-assisted [0.0]
本稿では,データベクトルの長さが指数関数的に大きいヒルベルト空間において,多変量データを量子状態に符号化する量子支援機械学習(QAML)法について述べる。
本稿ではゲートベースの量子コンピューティングデバイスに実装可能なアプローチを提案する。
論文 参考訳(メタデータ) (2021-04-06T02:31:48Z) - Quantum State Discrimination for Supervised Classification [0.5772546394254112]
本稿では,量子状態の識別が,機械学習における標準的な分類問題に対処するための有用なツールであることを示す。
従来の研究は、最適量子測定理論が新しい二項分類アルゴリズムを刺激できることを示した。
量子状態の識別に着想を得た任意の多クラス分類モデルを提案する。
論文 参考訳(メタデータ) (2021-04-02T10:22:59Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
53量子ビット量子プロセッサにおける量子スクランブルのダイナミクスを実験的に検討する。
演算子の拡散は効率的な古典的モデルによって捉えられるが、演算子の絡み合いは指数関数的にスケールされた計算資源を必要とする。
論文 参考訳(メタデータ) (2021-01-21T22:18:49Z) - Quantum information spreading in a disordered quantum walk [50.591267188664666]
量子ウォークスを用いて量子情報拡散パターンを探索する量子探索プロトコルを設計する。
我々は、異常や古典的輸送を調査するために、コヒーレントな静的および動的障害に焦点を当てる。
以上の結果から,複雑なネットワークで発生する欠陥や摂動の情報を読み取る装置として,量子ウォーク(Quantum Walk)が考えられる。
論文 参考訳(メタデータ) (2020-10-20T20:03:19Z) - Universal Approximation Property of Quantum Machine Learning Models in
Quantum-Enhanced Feature Spaces [0.0]
本研究では, 領域分割における量子特徴写像の能力について検討する。
我々の研究は、量子特徴写像に基づく機械学習アルゴリズムが幅広い機械学習タスクを扱えるように、重要な理論的分析を可能にする。
論文 参考訳(メタデータ) (2020-09-01T09:09:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。