論文の概要: A Case Study on Evaluating Genetic Algorithms for Early Building Design Optimization: Comparison with Random and Grid Searches
- arxiv url: http://arxiv.org/abs/2504.08106v1
- Date: Thu, 10 Apr 2025 20:07:59 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-14 14:19:56.328970
- Title: A Case Study on Evaluating Genetic Algorithms for Early Building Design Optimization: Comparison with Random and Grid Searches
- Title(参考訳): 早期建築設計最適化のための遺伝的アルゴリズムの評価に関する事例研究:ランダム・グリッド探索との比較
- Authors: Farnaz Nazari, Wei Yan,
- Abstract要約: 本研究は,早期設計最適化における遺伝的アルゴリズムの有効性を評価する。
本研究は,RSが最適解を欠いたとしても,厳密な計算限界下では予期せぬ有効性を示した。
- 参考スコア(独自算出の注目度): 6.531561475204309
- License:
- Abstract: In early-stage architectural design, optimization algorithms are essential for efficiently exploring large and complex design spaces under tight computational constraints. While prior research has benchmarked various optimization methods, their findings often lack generalizability to real-world, domain-specific problems, particularly in early building design optimization for energy performance. This study evaluates the effectiveness of Genetic Algorithms (GAs) for early design optimization, focusing on their ability to find near-optimal solutions within limited timeframes. Using a constrained case study, we compare a simple GA to two baseline methods, Random Search (RS) and Grid Search (GS), with each algorithm tested 10 times to enhance the reliability of the conclusions. Our findings show that while RS may miss optimal solutions due to its stochastic nature, it was unexpectedly effective under tight computational limits. Despite being more systematic, GS was outperformed by RS, likely due to the irregular design search space. This suggests that, under strict computational constraints, lightweight methods like RS can sometimes outperform more complex approaches like GA. As this study is limited to a single case under specific constraints, future research should investigate a broader range of design scenarios and computational settings to validate and generalize the findings. Additionally, the potential of Random Search or hybrid optimization methods should be further investigated, particularly in contexts with strict computational limitations.
- Abstract(参考訳): 初期のアーキテクチャ設計では、最適化アルゴリズムは厳密な計算制約の下で大規模で複雑な設計空間を効率的に探索するために不可欠である。
以前の研究では様々な最適化手法がベンチマークされているが、その発見は実世界のドメイン固有の問題、特にエネルギー性能の早期設計における一般化性に欠けることが多い。
本研究は, 遺伝的アルゴリズム(GA)の早期設計における有効性を評価し, 限られた時間枠内でほぼ最適解を求める能力に着目した。
制約付きケーススタディを用いて,ランダムサーチ(RS)とグリッドサーチ(GS)の2つのベースライン手法と,結果の信頼性を高めるために各アルゴリズムを10回試験した。
その結果,RSは確率的性質から最適解を逸脱するが,厳密な計算限界下では予期せぬ有効性を示した。
より体系的であったにもかかわらず、GSはRSよりも優れており、おそらく不規則な設計の検索スペースのためであった。
これは、厳密な計算制約の下では、RSのような軽量な手法がGAのようなより複雑な手法よりも優れていることを示唆している。
本研究は, 特定の制約下での単一事例に限られるため, 今後の研究は, より広範な設計シナリオと計算条件を検証・一般化するために検討すべきである。
さらに、特に厳密な計算制限のある文脈において、ランダム探索やハイブリッド最適化手法の可能性についても検討する必要がある。
関連論文リスト
- BMR and BWR: Two simple metaphor-free optimization algorithms for solving real-life non-convex constrained and unconstrained problems [0.5755004576310334]
本稿では,Best-MeanRandom (BMR) とBest-Worst-Random (BWR) の2つの単純な最適化アルゴリズムについて述べる。
論文 参考訳(メタデータ) (2024-07-15T18:11:47Z) - Quality-Diversity Algorithms Can Provably Be Helpful for Optimization [24.694984679399315]
QD(Quality-Diversity)アルゴリズムは、ハイパフォーマンスだが多様なソリューションのセットを見つけることを目的としている。
本稿では,厳密な実行時間解析によってQDアルゴリズムの最適化能力に光を当てようとしている。
論文 参考訳(メタデータ) (2024-01-19T07:40:24Z) - Genetic Engineering Algorithm (GEA): An Efficient Metaheuristic
Algorithm for Solving Combinatorial Optimization Problems [1.8434042562191815]
遺伝的アルゴリズム(GA)は最適化問題の解法における効率性で知られている。
本稿では遺伝子工学の概念からインスピレーションを得るため,遺伝子工学アルゴリズム(GEA)と呼ばれる新しいメタヒューリスティックアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-09-28T13:05:30Z) - Convergence Rate Analysis for Optimal Computing Budget Allocation
Algorithms [1.713291434132985]
オーディナル最適化(Ordinal Optimization, OO)は、離散イベント動的システムを最適化するための広く研究されている手法である。
OOのよく知られた方法は、最適計算予算配分(OCBA)である。
本稿では,2つのOCBAアルゴリズムについて検討する。
論文 参考訳(メタデータ) (2022-11-27T04:55:40Z) - Fractal Structure and Generalization Properties of Stochastic
Optimization Algorithms [71.62575565990502]
最適化アルゴリズムの一般化誤差は、その一般化尺度の根底にあるフラクタル構造の複雑性'にバウンドできることを示す。
さらに、特定の問題(リニア/ロジスティックレグレッション、隠れ/層ニューラルネットワークなど)とアルゴリズムに対して、結果をさらに専門化します。
論文 参考訳(メタデータ) (2021-06-09T08:05:36Z) - Practical Schemes for Finding Near-Stationary Points of Convex
Finite-Sums [45.91933657088324]
凸有限サムの近定常点探索におけるアルゴリズム手法の体系的研究を行う。
私たちの主な貢献は、いくつかのアルゴリズム的な発見です。
我々は,今後の発展を促進する新しいスキームのシンプルさと実用性を強調した。
論文 参考訳(メタデータ) (2021-05-25T16:46:35Z) - Towards Optimally Efficient Tree Search with Deep Learning [76.64632985696237]
本稿では,線形モデルから信号整数を推定する古典整数最小二乗問題について検討する。
問題はNPハードであり、信号処理、バイオインフォマティクス、通信、機械学習といった様々な応用でしばしば発生する。
本稿では, 深いニューラルネットワークを用いて, 単純化されたメモリバウンドA*アルゴリズムの最適推定を推定し, HATSアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-01-07T08:00:02Z) - An AI-Assisted Design Method for Topology Optimization Without
Pre-Optimized Training Data [68.8204255655161]
トポロジ最適化に基づくAI支援設計手法を提示し、最適化された設計を直接的に得ることができる。
設計は、境界条件と入力データとしての充填度に基づいて、人工ニューラルネットワーク、予測器によって提供される。
論文 参考訳(メタデータ) (2020-12-11T14:33:27Z) - Fast Objective & Duality Gap Convergence for Non-Convex Strongly-Concave
Min-Max Problems with PL Condition [52.08417569774822]
本稿では,深層学習(深層AUC)により注目度が高まっている,円滑な非凹部min-max問題の解法に焦点をあてる。
論文 参考訳(メタデータ) (2020-06-12T00:32:21Z) - Second-Order Guarantees in Centralized, Federated and Decentralized
Nonconvex Optimization [64.26238893241322]
単純なアルゴリズムは、多くの文脈において優れた経験的結果をもたらすことが示されている。
いくつかの研究は、非最適化問題を研究するための厳密な分析的正当化を追求している。
これらの分析における重要な洞察は、摂動が局所的な降下アルゴリズムを許容する上で重要な役割を担っていることである。
論文 参考訳(メタデータ) (2020-03-31T16:54:22Z) - Adaptivity of Stochastic Gradient Methods for Nonconvex Optimization [71.03797261151605]
適応性は現代最適化理論において重要であるが、研究されていない性質である。
提案アルゴリズムは,PL目標に対して既存のアルゴリズムよりも優れた性能を保ちながら,PL目標に対して最適な収束性を実現することを実証した。
論文 参考訳(メタデータ) (2020-02-13T05:42:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。