論文の概要: DrivAer Transformer: A high-precision and fast prediction method for vehicle aerodynamic drag coefficient based on the DrivAerNet++ dataset
- arxiv url: http://arxiv.org/abs/2504.08217v2
- Date: Tue, 15 Apr 2025 07:45:49 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-16 22:09:09.654184
- Title: DrivAer Transformer: A high-precision and fast prediction method for vehicle aerodynamic drag coefficient based on the DrivAerNet++ dataset
- Title(参考訳): DrivAer Transformer: DrivAerNet++データセットに基づく車両空力抵抗係数の高精度かつ高速予測法
- Authors: Jiaqi He, Xiangwen Luo, Yiping Wang,
- Abstract要約: 本研究では、DrivAer Transformerと呼ばれるポイントクラウド学習フレームワークを提案する。
DAT構造はDrivAerNet++データセットを使用しており、産業標準の3D車両形状の高忠実なCFDデータを含んでいる。
この枠組みは車両設計プロセスの加速と開発効率の向上が期待されている。
- 参考スコア(独自算出の注目度): 1.184330339427731
- License:
- Abstract: At the current stage, deep learning-based methods have demonstrated excellent capabilities in evaluating aerodynamic performance, significantly reducing the time and cost required for traditional computational fluid dynamics (CFD) simulations. However, when faced with the task of processing extremely complex three-dimensional (3D) vehicle models, the lack of large-scale datasets and training resources, coupled with the inherent diversity and complexity of the geometry of different vehicle models, means that the prediction accuracy and versatility of these networks are still not up to the level required for current production. In view of the remarkable success of Transformer models in the field of natural language processing and their strong potential in the field of image processing, this study innovatively proposes a point cloud learning framework called DrivAer Transformer (DAT). The DAT structure uses the DrivAerNet++ dataset, which contains high-fidelity CFD data of industrial-standard 3D vehicle shapes. enabling accurate estimation of air drag directly from 3D meshes, thus avoiding the limitations of traditional methods such as 2D image rendering or signed distance fields (SDF). DAT enables fast and accurate drag prediction, driving the evolution of the aerodynamic evaluation process and laying the critical foundation for introducing a data-driven approach to automotive design. The framework is expected to accelerate the vehicle design process and improve development efficiency.
- Abstract(参考訳): 現在、深層学習に基づく手法は、空力性能を評価する上で優れた能力を示しており、従来の計算流体力学(CFD)シミュレーションに必要な時間とコストを著しく削減している。
しかし、非常に複雑な3次元の車両モデルを処理するタスクに直面した場合、大規模なデータセットや訓練資源の欠如が、異なる車両モデルの幾何学の固有の多様性と複雑さと相まって、これらのネットワークの予測精度と汎用性は、現在の生産に必要なレベルに達していない。
本研究は,自然言語処理分野におけるトランスフォーマーモデルの成功と画像処理分野における強力なポテンシャルを踏まえ,DrivAer Transformer (DAT) と呼ばれるポイントクラウド学習フレームワークを革新的に提案する。
DAT構造はDrivAerNet++データセットを使用しており、産業標準の3D車両形状の高忠実なCFDデータを含んでいる。
これにより、3Dメッシュから直接空気抵抗を正確に推定することができ、2D画像レンダリングや符号付き距離場(SDF)といった従来の手法の制限を回避することができる。
DATは、高速かつ正確なドラッグ予測を可能にし、空気力学評価プロセスの進化を駆動し、データ駆動アプローチを自動車設計に導入するための重要な基礎を築き上げている。
この枠組みは車両設計プロセスの加速と開発効率の向上が期待されている。
関連論文リスト
- Factorized Implicit Global Convolution for Automotive Computational Fluid Dynamics Prediction [52.32698071488864]
非常に大きな3DメッシュのCFD問題を効率的に解く新しいアーキテクチャであるFactized Implicit Global Convolution (FIGConv)を提案する。
FIGConvは、既存の3DニューラルCFDモデルよりも大幅に改善された2次複雑性の$O(N2)$を達成する。
業界標準のAhmedボディデータセットと大規模DrivAerNetデータセットに対するアプローチを検証する。
論文 参考訳(メタデータ) (2025-02-06T18:57:57Z) - Drive-1-to-3: Enriching Diffusion Priors for Novel View Synthesis of Real Vehicles [81.29018359825872]
本稿では,実世界の課題に対して,大規模な事前学習モデルを微調整するための一連の優れたプラクティスを統合する。
具体的には,合成データと実運転データとの相違を考慮に入れたいくつかの戦略を開発する。
我々の洞察は、先行芸術よりも新しいビュー合成のためのFIDを68.8%値下げする効果のある微調整につながる。
論文 参考訳(メタデータ) (2024-12-19T03:39:13Z) - An Efficient Occupancy World Model via Decoupled Dynamic Flow and Image-assisted Training [50.71892161377806]
DFIT-OccWorldは、分離されたダイナミックフローとイメージアシストトレーニング戦略を活用する、効率的な3D占有世界モデルである。
提案モデルでは, 静止ボクセルはポーズ変換により容易に得られるのに対し, 既存のボクセルフローを用いて既存の観測を歪曲することで, 将来のダイナミックボクセルを予測できる。
論文 参考訳(メタデータ) (2024-12-18T12:10:33Z) - ALOcc: Adaptive Lifting-based 3D Semantic Occupancy and Cost Volume-based Flow Prediction [89.89610257714006]
既存の手法は、これらのタスクの要求に応えるために高い精度を優先する。
本稿では,3次元セマンティック占有率予測とフロー推定のための一連の改善点を紹介する。
私たちの純粋な時間的アーキテクチャフレームワークであるALOccは、速度と精度の最適なトレードオフを実現しています。
論文 参考訳(メタデータ) (2024-11-12T11:32:56Z) - AdaOcc: Adaptive Forward View Transformation and Flow Modeling for 3D Occupancy and Flow Prediction [56.72301849123049]
CVPR 2024 における nuScenes Open-Occ データセットチャレンジにおいて,視覚中心の3次元活動とフロー予測トラックのソリューションを提案する。
我々の革新的なアプローチは、適応的なフォワード・ビュー・トランスフォーメーションとフロー・モデリングを取り入れることで、3次元の占有率とフロー予測を向上させる2段階のフレームワークである。
提案手法は回帰と分類を組み合わせることで,様々な場面におけるスケールの変動に対処し,予測フローを利用して将来のフレームに現行のボクセル特徴をワープする。
論文 参考訳(メタデータ) (2024-07-01T16:32:15Z) - DrivAerNet++: A Large-Scale Multimodal Car Dataset with Computational Fluid Dynamics Simulations and Deep Learning Benchmarks [25.00264553520033]
DrivAerNet++は、高忠実度計算流体力学(CFD)シミュレーションをモデルとした8000の多種多様な自動車設計で構成されている。
データセットには、ファストバック、ノッチバック、エステートバックといった多様な車種が含まれており、内燃機関と電気自動車の両方を表す車体と車輪のデザインが異なる。
このデータセットは、データ駆動設計最適化、生成モデリング、代理モデルトレーニング、CFDシミュレーションアクセラレーション、幾何学的分類を含む幅広い機械学習アプリケーションをサポートしている。
論文 参考訳(メタデータ) (2024-06-13T23:19:48Z) - PLT-D3: A High-fidelity Dynamic Driving Simulation Dataset for Stereo Depth and Scene Flow [0.0]
本稿では,エンジン5を用いて生成した高忠実度ステレオ深度およびシーンフローグラウンド真理データであるダイナミックウェザードライビングデータセットを紹介する。
特に、このデータセットには、様々な動的気象シナリオを再現する、同期された高解像度ステレオ画像シーケンスが含まれている。
Unreal-D3を用いたいくつかの重要な自動運転タスクのためのベンチマークが確立され、最先端モデルの性能を計測し、向上している。
論文 参考訳(メタデータ) (2024-06-11T19:21:46Z) - DrivAerNet: A Parametric Car Dataset for Data-Driven Aerodynamic Design and Prediction [27.313594069397862]
本研究では,3次元産業標準車形状の大規模高速CFDデータセットであるDrivAerNetと,動的グラフ畳み込みニューラルネットワークモデルであるRegDGCNNを紹介する。
DrivAerNetとRegDGCNNは共に、車の設計プロセスを加速し、より効率的な車の開発に貢献することを約束している。
論文 参考訳(メタデータ) (2024-03-12T20:02:39Z) - Physics-Inspired Temporal Learning of Quadrotor Dynamics for Accurate
Model Predictive Trajectory Tracking [76.27433308688592]
クオーロタのシステムダイナミクスを正確にモデル化することは、アジャイル、安全、安定したナビゲーションを保証する上で非常に重要です。
本稿では,ロボットの経験から,四重項系の力学を純粋に学習するための新しい物理インスパイアされた時間畳み込みネットワーク(PI-TCN)を提案する。
提案手法は,スパース時間的畳み込みと高密度フィードフォワード接続の表現力を組み合わせて,正確なシステム予測を行う。
論文 参考訳(メタデータ) (2022-06-07T13:51:35Z) - Investigation of Physics-Informed Deep Learning for the Prediction of
Parametric, Three-Dimensional Flow Based on Boundary Data [0.0]
熱水車シミュレーションにおける3次元流れ場予測のためのパラメータ化サロゲートモデルを提案する。
物理インフォームドニューラルネットワーク (PINN) の設計は, 幾何学的変動に応じて, 流れ解の族を学習することを目的としている。
論文 参考訳(メタデータ) (2022-03-17T09:54:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。