論文の概要: Accelerating Multi-Objective Collaborative Optimization of Doped Thermoelectric Materials via Artificial Intelligence
- arxiv url: http://arxiv.org/abs/2504.08258v1
- Date: Fri, 11 Apr 2025 05:10:18 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-14 14:20:36.506618
- Title: Accelerating Multi-Objective Collaborative Optimization of Doped Thermoelectric Materials via Artificial Intelligence
- Title(参考訳): 人工知能によるドープ熱電材料の多目的協調最適化の高速化
- Authors: Yuxuan Zeng, Wenhao Xie, Wei Cao, Tan Peng, Yue Hou, Ziyu Wang, Jing Shi,
- Abstract要約: 材料の熱電特性は、元素の種類と比に複雑な非線形依存性を示す。
本研究では, ドープ材料の熱電特性を化学式から直接正確に予測できる深層学習モデルを提案する。
- 参考スコア(独自算出の注目度): 9.134276743542523
- License:
- Abstract: The thermoelectric performance of materials exhibits complex nonlinear dependencies on both elemental types and their proportions, rendering traditional trial-and-error approaches inefficient and time-consuming for material discovery. In this work, we present a deep learning model capable of accurately predicting thermoelectric properties of doped materials directly from their chemical formulas, achieving state-of-the-art performance. To enhance interpretability, we further incorporate sensitivity analysis techniques to elucidate how physical descriptors affect the thermoelectric figure of merit (zT). Moreover, we establish a coupled framework that integrates a surrogate model with a multi-objective genetic algorithm to efficiently explore the vast compositional space for high-performance candidates. Experimental validation confirms the discovery of a novel thermoelectric material with superior $zT$ values in the medium-temperature regime.
- Abstract(参考訳): 材料の熱電性能は、元素の種類とその比率に複雑な非線形依存を示し、従来の試行錯誤アプローチを非効率で時間を要するものにしている。
本研究では, ドープ材料の熱電特性を化学式から直接正確に予測し, 最先端性能を実現する深層学習モデルを提案する。
解釈可能性を高めるため,物理的記述子が熱電図形(zT)にどのように影響するかを明らかにするために,感度解析技術をさらに取り入れた。
さらに,サロゲートモデルと多目的遺伝的アルゴリズムを統合して,高性能候補のための膨大な構成空間を効率的に探索する結合フレームワークを構築した。
実験による検証により, 高温下での優れたzT$値を持つ新規熱電材料の発見が確認された。
関連論文リスト
- Predicting ionic conductivity in solids from the machine-learned potential energy landscape [68.25662704255433]
超イオン材料は、エネルギー密度と安全性を向上させる固体電池の推進に不可欠である。
このような物質を同定するための従来の計算手法は資源集約的であり、容易ではない。
普遍的原子間ポテンシャル解析によるイオン伝導率の迅速かつ確実な評価手法を提案する。
論文 参考訳(メタデータ) (2024-11-11T09:01:36Z) - A thermodynamically consistent physics-informed deep learning material model for short fiber/polymer nanocomposites [0.0]
本研究では, 種々の環境条件下での短繊維強化ナノ粒子充填エポキシスの粘弾性・粘弾性挙動を解析するための物理インフォームド・ディープ・ラーニング(PIDL)モデルを提案する。
PIDLモデルは, 種々の熱水条件下での繊維およびナノ粒子の体積分画に対するエポキシ系ナノコンポジットの力学的挙動を正確に予測することができる。
論文 参考訳(メタデータ) (2024-03-27T07:22:32Z) - Estimation of Electronic Band Gap Energy From Material Properties Using
Machine Learning [0.0]
本稿では,材料バンドギャップエネルギーを迅速に予測できる機械学習駆動モデルを提案する。
我々のモデルは、DFTに基づく予備的な計算や、材料の構造に関する知識を必要としない。
物質科学におけるMLモデルの性能を比較するための新しい評価手法を提案する。
論文 参考訳(メタデータ) (2024-03-08T07:32:28Z) - Probabilistic Physics-integrated Neural Differentiable Modeling for
Isothermal Chemical Vapor Infiltration Process [3.878427803346315]
化学気相浸透(CVI)は、炭素-炭素および炭化炭素-ケイ素複合化合物の製造に広く用いられている製造技術である。
CVI中の密度化過程は, これらの複合材料の最終性能, 品質, 整合性に重要な影響を及ぼす。
我々は物理積分型ニューラル微分可能(PiNDiff)モデリングフレームワークを用いたデータ駆動予測モデルを開発した。
論文 参考訳(メタデータ) (2023-11-13T23:25:18Z) - Stress and heat flux via automatic differentiation [0.0]
機械学習ポテンシャルはボルン・オッペンハイマーポテンシャルエネルギー表面の効率的な近似を提供する。
最近のポテンシャルは高いボディオーダーを特徴とし、メッセージパッシング機構による同変半局所相互作用を含むことができる。
本研究は, 力, 応力, 熱フラックスを得るための統一ADアプローチを示し, モデルに依存しない実装を提供する。
論文 参考訳(メタデータ) (2023-05-02T13:20:35Z) - Differentiable Agent-based Epidemiology [71.81552021144589]
GradABM(GradABM)は、エージェントベースのモデリングのためのスケーラブルで微分可能な設計で、勾配に基づく学習と自動微分が可能である。
GradABMは、コモディティハードウェア上で数秒で数百万の人口をシミュレートし、ディープニューラルネットワークと統合し、異種データソースを取り込みます。
論文 参考訳(メタデータ) (2022-07-20T07:32:02Z) - Molecular Attributes Transfer from Non-Parallel Data [57.010952598634944]
分子最適化をスタイル伝達問題として定式化し、非並列データの2つのグループ間の内部差を自動的に学習できる新しい生成モデルを提案する。
毒性修飾と合成性向上という2つの分子最適化タスクの実験により,本モデルがいくつかの最先端手法を著しく上回ることを示した。
論文 参考訳(メタデータ) (2021-11-30T06:10:22Z) - A deep learning driven pseudospectral PCE based FFT homogenization
algorithm for complex microstructures [68.8204255655161]
提案手法は,従来の手法よりも高速に評価できる一方で,興味の中心モーメントを予測できることを示す。
提案手法は,従来の手法よりも高速に評価できると同時に,興味の中心モーメントを予測できることを示す。
論文 参考訳(メタデータ) (2021-10-26T07:02:14Z) - BIGDML: Towards Exact Machine Learning Force Fields for Materials [55.944221055171276]
機械学習力場(MLFF)は正確で、計算的で、データ効率が良く、分子、材料、およびそれらのインターフェースに適用できなければならない。
ここでは、Bravais-Inspired Gradient-Domain Machine Learningアプローチを導入し、わずか10-200原子のトレーニングセットを用いて、信頼性の高い力場を構築する能力を実証する。
論文 参考訳(メタデータ) (2021-06-08T10:14:57Z) - Polymers for Extreme Conditions Designed Using Syntax-Directed
Variational Autoencoders [53.34780987686359]
現在、機械学習ツールは、望まれる特性を持つ材料候補を事実上スクリーニングするために使用される。
このアプローチは非効率であり、人間の想像力が知覚できる候補によって厳しく制約されている。
文法指向の変分オートエンコーダ(VAE)とガウス過程回帰(GPR)モデルを用いて、3つの極端な条件下で頑健なポリマーを発見する。
論文 参考訳(メタデータ) (2020-11-04T21:36:59Z) - Learning Composable Energy Surrogates for PDE Order Reduction [28.93892833892805]
パラメトリックなモジュラー構造を用いてコンポーネントレベルのサロゲートを学習し、より安価な高忠実度シミュレーションを実現する。
ニューラルネットワークを用いて、所定の境界条件で格納されたポテンシャルエネルギーをモデル化する。
構成可能なエネルギーサロゲートは、コンポーネント境界の縮小に基づくシミュレーションを可能にする。
論文 参考訳(メタデータ) (2020-05-13T19:41:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。