論文の概要: A thermodynamically consistent physics-informed deep learning material model for short fiber/polymer nanocomposites
- arxiv url: http://arxiv.org/abs/2403.18310v1
- Date: Wed, 27 Mar 2024 07:22:32 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-28 18:06:46.032344
- Title: A thermodynamically consistent physics-informed deep learning material model for short fiber/polymer nanocomposites
- Title(参考訳): 短繊維/高分子ナノコンポジットの熱力学的一貫した物理インフォームド深層学習材料モデル
- Authors: Betim Bahtiri, Behrouz Arash, Sven Scheffler, Maximilian Jux, Raimund Rolfes,
- Abstract要約: 本研究では, 種々の環境条件下での短繊維強化ナノ粒子充填エポキシスの粘弾性・粘弾性挙動を解析するための物理インフォームド・ディープ・ラーニング(PIDL)モデルを提案する。
PIDLモデルは, 種々の熱水条件下での繊維およびナノ粒子の体積分画に対するエポキシ系ナノコンポジットの力学的挙動を正確に予測することができる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This work proposes a physics-informed deep learning (PIDL)-based constitutive model for investigating the viscoelastic-viscoplastic behavior of short fiber-reinforced nanoparticle-filled epoxies under various ambient conditions. The deep-learning model is trained to enforce thermodynamic principles, leading to a thermodynamically consistent constitutive model. To accomplish this, a long short-term memory network is combined with a feed-forward neural network to predict internal variables required for characterizing the internal dissipation of the nanocomposite materials. In addition, another feed-forward neural network is used to indicate the free-energy function, which enables defining the thermodynamic state of the entire system. The PIDL model is initially developed for the three-dimensional case by generating synthetic data from a classical constitutive model. The model is then trained by extracting the data directly from cyclic loading-unloading experimental tests. Numerical examples show that the PIDL model can accurately predict the mechanical behavior of epoxy-based nanocomposites for different volume fractions of fibers and nanoparticles under various hygrothermal conditions.
- Abstract(参考訳): 本研究では, 種々の環境条件下での短繊維強化ナノ粒子充填エポキシスの粘弾性・粘弾性挙動を解析するための物理インフォームド・ディープ・ラーニング(PIDL)を用いた構成モデルを提案する。
ディープラーニングモデルは熱力学の原理を強制するために訓練され、熱力学的に一貫した構成モデルをもたらす。
これを実現するために、長い短期記憶ネットワークとフィードフォワードニューラルネットワークを組み合わせることで、ナノコンポジット材料の内部散逸を特徴づけるために必要な内部変数を予測する。
さらに、別のフィードフォワードニューラルネットワークを使用して、システム全体の熱力学状態を定義する自由エネルギー関数を示す。
PIDLモデルは,古典的な構成モデルから合成データを生成することによって,3次元ケース向けに開発された。
次に、循環負荷アンロード実験からデータを直接抽出することで、モデルを訓練する。
数値実験により, PIDLモデルにより, 種々の熱水条件下での繊維およびナノ粒子の体積分画に対するエポキシ系ナノコンポジットの力学的挙動を正確に予測できることが示された。
関連論文リスト
- Latent Space Energy-based Neural ODEs [73.01344439786524]
本稿では,連続時間シーケンスデータを表現するために設計された深部力学モデルの新しいファミリを紹介する。
マルコフ連鎖モンテカルロの最大推定値を用いてモデルを訓練する。
発振システム、ビデオ、実世界の状態シーケンス(MuJoCo)の実験は、学習可能なエネルギーベース以前のODEが既存のものより優れていることを示している。
論文 参考訳(メタデータ) (2024-09-05T18:14:22Z) - Physically recurrent neural network for rate and path-dependent heterogeneous materials in a finite strain framework [0.0]
不均一物質のマイクロスケール解析のためのハイブリッド物理に基づくデータ駆動サロゲートモデルについて検討した。
提案したモデルは、ニューラルネットワークにそれらを埋め込むことで、フルオーダーのマイクロモデルで使用されるモデルに含まれる物理に基づく知識の恩恵を受ける。
論文 参考訳(メタデータ) (2024-04-05T12:40:03Z) - Physics-Informed Neural Networks with Hard Linear Equality Constraints [9.101849365688905]
本研究は,線形等式制約を厳格に保証する物理インフォームドニューラルネットワークKKT-hPINNを提案する。
溶融タンク炉ユニット, 抽出蒸留サブシステム, 化学プラントのアスペンモデル実験により, このモデルが予測精度をさらに高めることを示した。
論文 参考訳(メタデータ) (2024-02-11T17:40:26Z) - Discovering Interpretable Physical Models using Symbolic Regression and
Discrete Exterior Calculus [55.2480439325792]
本稿では,記号回帰(SR)と離散指数計算(DEC)を組み合わせて物理モデルの自動発見を行うフレームワークを提案する。
DECは、SRの物理問題への最先端の応用を越えている、場の理論の離散的な類似に対して、ビルディングブロックを提供する。
実験データから連続体物理の3つのモデルを再発見し,本手法の有効性を実証する。
論文 参考訳(メタデータ) (2023-10-10T13:23:05Z) - A machine learning-based viscoelastic-viscoplastic model for epoxy
nanocomposites with moisture content [0.0]
本研究では, 含水ナノ粒子の循環粘弾性・粘弾性・粘塑性損傷挙動を解析するための深層学習モデルを提案する。
サンプリング手法と摂動法を組み合わせた長期記憶ネットワークを訓練する。
実験によって検証された粘弾性-粘弾性-粘弾性モデルにより生成されたトレーニングデータとともに、DLモデルは、速度依存性の応力-ひずみ関係を正確に捉えることができる。
論文 参考訳(メタデータ) (2023-05-14T08:33:11Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
実験データから未知のパラメータを復元するために、モデルハミルトンのシミュレーションデータを模倣するために訓練されたニューラルネットワークと自動微分を組み合わせた人工知能フレームワークを開発する。
そこで本研究では, 実時間から多次元散乱データに適用可能な微分可能なモデルを1回だけ構築し, 訓練する能力について述べる。
論文 参考訳(メタデータ) (2023-04-08T07:55:36Z) - Data-driven anisotropic finite viscoelasticity using neural ordinary
differential equations [0.0]
本研究では, ニューラル常微分方程式をビルディングブロックとして用いた, 異方性有限粘弾性の完全なデータ駆動モデルを構築した。
我々は、ヘルムホルツ自由エネルギー関数と散逸ポテンシャルを、物理に基づく制約を満たすデータ駆動関数に置き換える。
本モデルは,脳組織,血液凝固物,天然ゴム,ヒト心筋などの生体および合成材料のストレス-ひずみデータを用いて訓練する。
論文 参考訳(メタデータ) (2023-01-11T17:03:46Z) - Neural Operator with Regularity Structure for Modeling Dynamics Driven
by SPDEs [70.51212431290611]
偏微分方程式 (SPDE) は、大気科学や物理学を含む多くの分野において、力学をモデル化するための重要なツールである。
本研究では,SPDEによって駆動されるダイナミクスをモデル化するための特徴ベクトルを組み込んだニューラル演算子(NORS)を提案する。
動的Phi41モデルと2d Navier-Stokes方程式を含む様々なSPDE実験を行った。
論文 参考訳(メタデータ) (2022-04-13T08:53:41Z) - EINNs: Epidemiologically-Informed Neural Networks [75.34199997857341]
本稿では,疫病予測のための新しい物理インフォームドニューラルネットワークEINNを紹介する。
メカニスティックモデルによって提供される理論的柔軟性と、AIモデルによって提供されるデータ駆動表現性の両方を活用する方法について検討する。
論文 参考訳(メタデータ) (2022-02-21T18:59:03Z) - Automatically Polyconvex Strain Energy Functions using Neural Ordinary
Differential Equations [0.0]
深層ニューラルネットワークは、フォーム近似の制約なしに複雑な物質を学習することができる。
N-ODE材料モデルは、クローズドフォーム材料モデルから生成された合成データをキャプチャすることができる。
フレームワークは、大きな種類の材料をモデル化するのに使用できます。
論文 参考訳(メタデータ) (2021-10-03T13:11:43Z) - A Compact Gated-Synapse Model for Neuromorphic Circuits [77.50840163374757]
このモデルは、ニューロモルフィック回路のコンピュータ支援設計への統合を容易にするためにVerilog-Aで開発された。
モデルの振る舞い理論は、デフォルトパラメータ設定の完全なリストとともに詳細に記述されている。
論文 参考訳(メタデータ) (2020-06-29T18:22:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。