Scalable Conflict-free Decision Making with Photons
- URL: http://arxiv.org/abs/2504.08331v1
- Date: Fri, 11 Apr 2025 07:54:45 GMT
- Title: Scalable Conflict-free Decision Making with Photons
- Authors: Kohei Konaka, André Röhm, Takatomo Mihana, Ryoichi Horisaki,
- Abstract summary: In this work, we explore its ability to solve certain reinforcement learning tasks, with a particular view towards the scalability of the approach.<n>Our method utilizes the Orbital Angular Momentum (OAM) of photons to solve the Competitive Multi-Armed Bandit (CMAB) problem.<n>We find that the proposed system is capable of solving the CMAB problem with a scalable number of options and demonstrates improved performance over existing techniques.
- Score: 1.124958340749622
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum optics utilizes the unique properties of light for computation or communication. In this work, we explore its ability to solve certain reinforcement learning tasks, with a particular view towards the scalability of the approach. Our method utilizes the Orbital Angular Momentum (OAM) of photons to solve the Competitive Multi-Armed Bandit (CMAB) problem while maximizing rewards. In particular, we encode each player's preferences in the OAM amplitudes, while the phases are optimized to avoid conflicts. We find that the proposed system is capable of solving the CMAB problem with a scalable number of options and demonstrates improved performance over existing techniques. As an example of a system with simple rules for solving complex tasks, our OAM-based method adds to the repertoire of functionality of quantum optics.
Related papers
- Quantum Algorithms for Drone Mission Planning [0.0]
Mission planning often involves optimising the use of ISR (Intelligence, Surveillance and Reconnaissance) assets in order to achieve a set of mission objectives.
Finding such solutions is often an NP-Hard problem and cannot be solved efficiently on classical computers.
We investigate near term quantum algorithms that have the potential to offer speed-ups against current classical methods.
arXiv Detail & Related papers (2024-09-27T10:58:25Z) - UCB-driven Utility Function Search for Multi-objective Reinforcement Learning [75.11267478778295]
In Multi-objective Reinforcement Learning (MORL) agents are tasked with optimising decision-making behaviours.
We focus on the case of linear utility functions parameterised by weight vectors w.
We introduce a method based on Upper Confidence Bound to efficiently search for the most promising weight vectors during different stages of the learning process.
arXiv Detail & Related papers (2024-05-01T09:34:42Z) - Large Language Models to Enhance Bayesian Optimization [57.474613739645605]
We present LLAMBO, a novel approach that integrates the capabilities of Large Language Models (LLM) within Bayesian optimization.
At a high level, we frame the BO problem in natural language, enabling LLMs to iteratively propose and evaluate promising solutions conditioned on historical evaluations.
Our findings illustrate that LLAMBO is effective at zero-shot warmstarting, and enhances surrogate modeling and candidate sampling, especially in the early stages of search when observations are sparse.
arXiv Detail & Related papers (2024-02-06T11:44:06Z) - Quantum-inspired optimization for wavelength assignment [51.55491037321065]
We propose and develop a quantum-inspired algorithm for solving the wavelength assignment problem.
Our results pave the way to the use of quantum-inspired algorithms for practical problems in telecommunications.
arXiv Detail & Related papers (2022-11-01T07:52:47Z) - Multi-Agent Deep Reinforcement Learning in Vehicular OCC [14.685237010856953]
We introduce a spectral efficiency optimization approach in vehicular OCC.
We model the optimization problem as a Markov decision process (MDP) to enable the use of solutions that can be applied online.
We verify the performance of our proposed scheme through extensive simulations and compare it with various variants of our approach and a random method.
arXiv Detail & Related papers (2022-05-05T14:25:54Z) - General Hamiltonian Representation of ML Detection Relying on the
Quantum Approximate Optimization Algorithm [74.6114458993128]
The quantum approximate optimization algorithm (QAOA) conceived for solving optimization problems can be run on the existing noisy intermediate-scale quantum (NISQ) devices.
We solve the maximum likelihood (ML) detection problem for general constellations by appropriately adapting the QAOA.
In particular, for an M-ary Gray-mapped quadrature amplitude modulation (MQAM) constellation, we show that the specific qubits encoding the in-phase components and those encoding the quadrature components are independent in the quantum system of interest.
arXiv Detail & Related papers (2022-04-11T14:11:24Z) - Adiabatic Quantum Computing for Multi Object Tracking [170.8716555363907]
Multi-Object Tracking (MOT) is most often approached in the tracking-by-detection paradigm, where object detections are associated through time.
As these optimization problems are often NP-hard, they can only be solved exactly for small instances on current hardware.
We show that our approach is competitive compared with state-of-the-art optimization-based approaches, even when using of-the-shelf integer programming solvers.
arXiv Detail & Related papers (2022-02-17T18:59:20Z) - Coherent Ising Machines with Optical Error Correction Circuits [0.0]
We propose a network of open-dissipative quantum oscillators with optical error correction circuits.
The quantum theory of the proposed CIMs can be used as a parametric algorithm and efficiently implemented on existing digital platforms.
We find that the proposed optical implementations have the potential for low energy consumption when implemented optically on a thin film LiNbO3 platform.
arXiv Detail & Related papers (2021-08-16T22:53:40Z) - Efficient Model-Based Multi-Agent Mean-Field Reinforcement Learning [89.31889875864599]
We propose an efficient model-based reinforcement learning algorithm for learning in multi-agent systems.
Our main theoretical contributions are the first general regret bounds for model-based reinforcement learning for MFC.
We provide a practical parametrization of the core optimization problem.
arXiv Detail & Related papers (2021-07-08T18:01:02Z) - Quantum constraint learning for quantum approximate optimization
algorithm [0.0]
This paper introduces a quantum machine learning approach to learn the mixer Hamiltonian required to hard constrain the search subspace.
One can directly plug the learnt unitary into the QAOA framework using an adaptable ansatz.
We also develop an intuitive metric that uses Wasserstein distance to assess the performance of general approximate optimization algorithms with/without constraints.
arXiv Detail & Related papers (2021-05-14T11:31:14Z) - Certificates of quantum many-body properties assisted by machine
learning [0.0]
We propose a novel approach combining the power of relaxation techniques with deep reinforcement learning.
We illustrate the viability of the method in the context of finding the ground state energy of many transfer systems.
We provide tools to generalize the approach to other common applications in the field of quantum information processing.
arXiv Detail & Related papers (2021-03-05T17:47:26Z) - GACEM: Generalized Autoregressive Cross Entropy Method for Multi-Modal
Black Box Constraint Satisfaction [69.94831587339539]
We present a modified Cross-Entropy Method (CEM) that uses a masked auto-regressive neural network for modeling uniform distributions over the solution space.
Our algorithm is able to express complicated solution spaces, thus allowing it to track a variety of different solution regions.
arXiv Detail & Related papers (2020-02-17T20:21:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.