Certificates of quantum many-body properties assisted by machine
learning
- URL: http://arxiv.org/abs/2103.03830v1
- Date: Fri, 5 Mar 2021 17:47:26 GMT
- Title: Certificates of quantum many-body properties assisted by machine
learning
- Authors: Borja Requena, Gorka Mu\~noz-Gil, Maciej Lewenstein, Vedran Dunjko,
Jordi Tura
- Abstract summary: We propose a novel approach combining the power of relaxation techniques with deep reinforcement learning.
We illustrate the viability of the method in the context of finding the ground state energy of many transfer systems.
We provide tools to generalize the approach to other common applications in the field of quantum information processing.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Computationally intractable tasks are often encountered in physics and
optimization. Such tasks often comprise a cost function to be optimized over a
so-called feasible set, which is specified by a set of constraints. This may
yield, in general, to difficult and non-convex optimization tasks. A number of
standard methods are used to tackle such problems: variational approaches focus
on parameterizing a subclass of solutions within the feasible set; in contrast,
relaxation techniques have been proposed to approximate it from outside, thus
complementing the variational approach by providing ultimate bounds to the
global optimal solution. In this work, we propose a novel approach combining
the power of relaxation techniques with deep reinforcement learning in order to
find the best possible bounds within a limited computational budget. We
illustrate the viability of the method in the context of finding the ground
state energy of many-body quantum systems, a paradigmatic problem in quantum
physics. We benchmark our approach against other classical optimization
algorithms such as breadth-first search or Monte-Carlo, and we characterize the
effect of transfer learning. We find the latter may be indicative of phase
transitions, with a completely autonomous approach. Finally, we provide tools
to generalize the approach to other common applications in the field of quantum
information processing.
Related papers
- Learning Joint Models of Prediction and Optimization [56.04498536842065]
Predict-Then-Then framework uses machine learning models to predict unknown parameters of an optimization problem from features before solving.
This paper proposes an alternative method, in which optimal solutions are learned directly from the observable features by joint predictive models.
arXiv Detail & Related papers (2024-09-07T19:52:14Z) - Measurement-Based Quantum Approximate Optimization [0.24861619769660645]
We focus on measurement-based quantum computing protocols for approximate optimization.
We derive measurement patterns for applying QAOA to the broad and important class of QUBO problems.
We discuss the resource requirements and tradeoffs of our approach to that of more traditional quantum circuits.
arXiv Detail & Related papers (2024-03-18T06:59:23Z) - Optimizing Solution-Samplers for Combinatorial Problems: The Landscape
of Policy-Gradient Methods [52.0617030129699]
We introduce a novel theoretical framework for analyzing the effectiveness of DeepMatching Networks and Reinforcement Learning methods.
Our main contribution holds for a broad class of problems including Max-and Min-Cut, Max-$k$-Bipartite-Bi, Maximum-Weight-Bipartite-Bi, and Traveling Salesman Problem.
As a byproduct of our analysis we introduce a novel regularization process over vanilla descent and provide theoretical and experimental evidence that it helps address vanishing-gradient issues and escape bad stationary points.
arXiv Detail & Related papers (2023-10-08T23:39:38Z) - Variational quantum algorithm for experimental photonic multiparameter
estimation [0.0]
We develop a variational approach to efficiently optimize a quantum phase sensor operating in a noisy environment.
By exploiting the high reconfigurability of an integrated photonic device, we implement a hybrid quantum-classical feedback loop.
Our experimental results reveal significant improvements in terms of estimation accuracy and noise robustness.
arXiv Detail & Related papers (2023-08-04T18:01:14Z) - Learning Proximal Operators to Discover Multiple Optima [66.98045013486794]
We present an end-to-end method to learn the proximal operator across non-family problems.
We show that for weakly-ized objectives and under mild conditions, the method converges globally.
arXiv Detail & Related papers (2022-01-28T05:53:28Z) - Markov Chain Monte-Carlo Enhanced Variational Quantum Algorithms [0.0]
We introduce a variational quantum algorithm that uses Monte Carlo techniques to place analytic bounds on its time-complexity.
We demonstrate both the effectiveness of our technique and the validity of our analysis through quantum circuit simulations for MaxCut instances.
arXiv Detail & Related papers (2021-12-03T23:03:44Z) - Quadratic Unconstrained Binary Optimisation via Quantum-Inspired
Annealing [58.720142291102135]
We present a classical algorithm to find approximate solutions to instances of quadratic unconstrained binary optimisation.
We benchmark our approach for large scale problem instances with tuneable hardness and planted solutions.
arXiv Detail & Related papers (2021-08-18T09:26:17Z) - Quantum constraint learning for quantum approximate optimization
algorithm [0.0]
This paper introduces a quantum machine learning approach to learn the mixer Hamiltonian required to hard constrain the search subspace.
One can directly plug the learnt unitary into the QAOA framework using an adaptable ansatz.
We also develop an intuitive metric that uses Wasserstein distance to assess the performance of general approximate optimization algorithms with/without constraints.
arXiv Detail & Related papers (2021-05-14T11:31:14Z) - Adaptive pruning-based optimization of parameterized quantum circuits [62.997667081978825]
Variisy hybrid quantum-classical algorithms are powerful tools to maximize the use of Noisy Intermediate Scale Quantum devices.
We propose a strategy for such ansatze used in variational quantum algorithms, which we call "Efficient Circuit Training" (PECT)
Instead of optimizing all of the ansatz parameters at once, PECT launches a sequence of variational algorithms.
arXiv Detail & Related papers (2020-10-01T18:14:11Z) - Low depth mechanisms for quantum optimization [0.25295633594332334]
We focus on developing a language and tools connected with kinetic energy on a graph for understanding the physical mechanisms of success and failure to guide algorithmic improvement.
This is connected to effects from wavefunction confinement, phase randomization, and shadow defects lurking in the objective far away from the ideal solution.
arXiv Detail & Related papers (2020-08-19T18:16:26Z) - Cross Entropy Hyperparameter Optimization for Constrained Problem
Hamiltonians Applied to QAOA [68.11912614360878]
Hybrid quantum-classical algorithms such as Quantum Approximate Optimization Algorithm (QAOA) are considered as one of the most encouraging approaches for taking advantage of near-term quantum computers in practical applications.
Such algorithms are usually implemented in a variational form, combining a classical optimization method with a quantum machine to find good solutions to an optimization problem.
In this study we apply a Cross-Entropy method to shape this landscape, which allows the classical parameter to find better parameters more easily and hence results in an improved performance.
arXiv Detail & Related papers (2020-03-11T13:52:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.