論文の概要: Enterprise-Grade Security for the Model Context Protocol (MCP): Frameworks and Mitigation Strategies
- arxiv url: http://arxiv.org/abs/2504.08623v1
- Date: Fri, 11 Apr 2025 15:25:58 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-21 16:43:55.26823
- Title: Enterprise-Grade Security for the Model Context Protocol (MCP): Frameworks and Mitigation Strategies
- Title(参考訳): モデルコンテキストプロトコル(MCP)のエンタープライズグレードセキュリティ:フレームワークと緩和戦略
- Authors: Vineeth Sai Narajala, Idan Habler,
- Abstract要約: Model Context Protocol (MCP) は、人工知能(AI)システムのための標準化されたフレームワークを提供する。
本稿では,エンタープライズグレードの緩和フレームワークを提供するため,MPPアーキテクチャの基礎研究と予備的セキュリティアセスメントについて述べる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The Model Context Protocol (MCP), introduced by Anthropic, provides a standardized framework for artificial intelligence (AI) systems to interact with external data sources and tools in real-time. While MCP offers significant advantages for AI integration and capability extension, it introduces novel security challenges that demand rigorous analysis and mitigation. This paper builds upon foundational research into MCP architecture and preliminary security assessments to deliver enterprise-grade mitigation frameworks and detailed technical implementation strategies. Through systematic threat modeling and analysis of MCP implementations and analysis of potential attack vectors, including sophisticated threats like tool poisoning, we present actionable security patterns tailored for MCP implementers and adopters. The primary contribution of this research lies in translating theoretical security concerns into a practical, implementable framework with actionable controls, thereby providing essential guidance for the secure enterprise adoption and governance of integrated AI systems.
- Abstract(参考訳): Anthropicが導入したModel Context Protocol(MCP)は、人工知能(AI)システムのための標準化されたフレームワークで、外部データソースやツールとリアルタイムで対話する。
MCPはAI統合と機能拡張に大きな利点を提供するが、厳格な分析と緩和を要求する新しいセキュリティ課題を導入する。
本稿では,エンタープライズグレードの緩和フレームワークと詳細な技術的実装戦略を提供するため,MDPアーキテクチャの基礎研究と,予備的なセキュリティ評価を行う。
MCP実装の体系的な脅威モデリングと分析、ツール中毒などの高度な脅威を含む潜在的な攻撃ベクトルの分析を通じて、MPP実装者や導入者に適した実行可能なセキュリティパターンを示す。
この研究の主な貢献は、理論的なセキュリティ上の懸念を実行可能なコントロールを備えた実践的で実装可能なフレームワークに翻訳することで、統合されたAIシステムの安全なエンタープライズ導入とガバナンスのための重要なガイダンスを提供することである。
関連論文リスト
- MCP Guardian: A Security-First Layer for Safeguarding MCP-Based AI System [0.0]
MCPガーディアンは、認証、レート制限、ロギング、トレース、Web Application Firewall(WAF)スキャンによるMPPベースの通信を強化するフレームワークである。
弊社のアプローチは、AIアシスタントのためのセキュアでスケーラブルなデータアクセスを促進する。
論文 参考訳(メタデータ) (2025-04-17T08:49:10Z) - Model Context Protocol (MCP): Landscape, Security Threats, and Future Research Directions [5.1875389249043415]
Model Context Protocol(MCP)は、AIモデルと外部ツールとリソースのシームレスな相互作用を可能にするために設計された標準化されたインターフェースである。
本稿では,MPP サーバのコアコンポーネント,ワークフロー,ライフサイクルに焦点をあてた総合的な MCP の概要について述べる。
我々は、各フェーズに関連するセキュリティとプライバシのリスクを分析し、潜在的な脅威を軽減するための戦略を提案する。
論文 参考訳(メタデータ) (2025-03-30T01:58:22Z) - Decoding the Black Box: Integrating Moral Imagination with Technical AI Governance [0.0]
我々は、防衛、金融、医療、教育といった高度な領域に展開するAI技術を規制するために設計された包括的なフレームワークを開発する。
本手法では,厳密な技術的分析,定量的リスク評価,規範的評価を併用して,システム的脆弱性を暴露する。
論文 参考訳(メタデータ) (2025-03-09T03:11:32Z) - AISafetyLab: A Comprehensive Framework for AI Safety Evaluation and Improvement [73.0700818105842]
我々は、AI安全のための代表的攻撃、防衛、評価方法論を統合する統合されたフレームワークとツールキットであるAISafetyLabを紹介する。
AISafetyLabには直感的なインターフェースがあり、開発者はシームレスにさまざまなテクニックを適用できる。
我々はヴィクナに関する実証的研究を行い、異なる攻撃戦略と防衛戦略を分析し、それらの比較効果に関する貴重な洞察を提供する。
論文 参考訳(メタデータ) (2025-02-24T02:11:52Z) - A Survey of Model Extraction Attacks and Defenses in Distributed Computing Environments [55.60375624503877]
モデル抽出攻撃(MEA)は、敵がモデルを盗み、知的財産と訓練データを公開することによって、現代の機械学習システムを脅かす。
この調査は、クラウド、エッジ、フェデレーションのユニークな特性がどのように攻撃ベクトルや防御要件を形作るのかを、緊急に理解する必要に起因している。
本研究は, 自動運転車, 医療, 金融サービスといった重要な分野において, 環境要因がセキュリティ戦略にどう影響するかを実証し, 攻撃手法と防衛機構の進化を系統的に検討する。
論文 参考訳(メタデータ) (2025-02-22T03:46:50Z) - Integrating Cybersecurity Frameworks into IT Security: A Comprehensive Analysis of Threat Mitigation Strategies and Adaptive Technologies [0.0]
サイバーセキュリティの脅威の状況は、IT構造を保護するための健全なフレームワークの開発を、積極的に推進している。
本稿では,サイバーセキュリティの脅威の性質の変化に対処する上での,このようなフレームワークの役割に焦点をあてて,ITセキュリティへのサイバーセキュリティフレームワークの適用について論じる。
この議論は、リアルタイム脅威検出と応答メカニズムのコアとして、人工知能(AI)や機械学習(ML)といった技術も挙げている。
論文 参考訳(メタデータ) (2025-02-02T03:38:48Z) - SoK: Unifying Cybersecurity and Cybersafety of Multimodal Foundation Models with an Information Theory Approach [58.93030774141753]
MFM(Multimodal foundation model)は、人工知能の大幅な進歩を表す。
本稿では,マルチモーダル学習におけるサイバーセーフティとサイバーセキュリティを概念化する。
我々は、これらの概念をMFMに統一し、重要な脅威を特定するための総合的知識体系化(SoK)を提案する。
論文 参考訳(メタデータ) (2024-11-17T23:06:20Z) - Large Model Based Agents: State-of-the-Art, Cooperation Paradigms, Security and Privacy, and Future Trends [64.57762280003618]
近い将来、LM駆動の汎用AIエージェントが、生産タスクにおいて不可欠なツールとして機能することが予想される。
本稿では,将来のLMエージェントの自律的協調に関わるシナリオについて検討する。
論文 参考訳(メタデータ) (2024-09-22T14:09:49Z) - EARBench: Towards Evaluating Physical Risk Awareness for Task Planning of Foundation Model-based Embodied AI Agents [53.717918131568936]
EAI(Embodied AI)は、高度なAIモデルを現実世界のインタラクションのための物理的なエンティティに統合する。
高レベルのタスク計画のためのEAIエージェントの"脳"としてのファンデーションモデルは、有望な結果を示している。
しかし、これらのエージェントの物理的環境への展開は、重大な安全性上の課題を呈している。
本研究では,EAIシナリオにおける身体的リスクの自動評価のための新しいフレームワークEARBenchを紹介する。
論文 参考訳(メタデータ) (2024-08-08T13:19:37Z) - Mapping LLM Security Landscapes: A Comprehensive Stakeholder Risk Assessment Proposal [0.0]
本稿では,従来のシステムにおけるリスク評価手法のようなツールを用いたリスク評価プロセスを提案する。
我々は、潜在的な脅威要因を特定し、脆弱性要因に対して依存するシステムコンポーネントをマッピングするためのシナリオ分析を行う。
3つの主要株主グループに対する脅威もマップ化しています。
論文 参考訳(メタデータ) (2024-03-20T05:17:22Z) - A Survey and Comparative Analysis of Security Properties of CAN Authentication Protocols [92.81385447582882]
コントロールエリアネットワーク(CAN)バスは車内通信を本質的に安全でないものにしている。
本稿では,CANバスにおける15の認証プロトコルをレビューし,比較する。
実装の容易性に寄与する本質的な運用基準に基づくプロトコルの評価を行う。
論文 参考訳(メタデータ) (2024-01-19T14:52:04Z) - Survey on Foundation Models for Prognostics and Health Management in
Industrial Cyber-Physical Systems [1.1034992901877594]
BERTやGPTのような大規模基盤モデル(LFM)は、AI技術の大幅な進歩を示している。
ChatGPTはこの研究パラダイムにおける顕著な成果であり、汎用人工知能の可能性を秘めている。
データ取得技術とデータ処理能力の継続的な向上を考えると、LCMはICPSのPHMドメインにおいて重要な役割を担うことが期待されている。
論文 参考訳(メタデータ) (2023-12-11T09:58:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。