論文の概要: Towards Personalized Conversational Sales Agents: Contextual User Profiling for Strategic Action
- arxiv url: http://arxiv.org/abs/2504.08754v4
- Date: Fri, 13 Jun 2025 11:19:12 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-16 13:34:01.524058
- Title: Towards Personalized Conversational Sales Agents: Contextual User Profiling for Strategic Action
- Title(参考訳): パーソナライズされた対話型セールスエージェントを目指して:戦略行動のためのコンテキストユーザプロファイリング
- Authors: Tongyoung Kim, Jeongeun Lee, Soojin Yoon, Sunghwan Kim, Dongha Lee,
- Abstract要約: 本稿では,一貫した会話の枠組みの中で,嗜好の誘惑,推薦,説得を統合する新しいタスクである会話販売(CSALES)について紹介する。
また,文脈的ユーザプロファイルを積極的に推測し,会話を通じて戦略的に行動を選択する対話販売エージェントであるCSIを提案する。
- 参考スコア(独自算出の注目度): 12.637812936971049
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Conversational Recommender Systems (CRSs)aim to engage users in dialogue to provide tailored recommendations. While traditional CRSs focus on eliciting preferences and retrieving items, real-world e-commerce interactions involve more complex decision-making, where users consider multiple factors beyond simple attributes. To capture this complexity, we introduce Conversational Sales (CSALES), a novel task that integrates preference elicitation, recommendation, and persuasion within a unified conversational framework. To support realistic and systematic evaluation, we present CSUSER, an evaluation protocol with LLM-based user simulator grounded in real-world behavioral data by modeling fine-grained user profiles for personalized interaction. We also propose CSI, a conversational sales agent that proactively infers contextual user profiles and strategically selects actions through conversation. Comprehensive experiments show that CSI significantly improves both recommendation success and persuasive effectiveness across diverse user profiles.
- Abstract(参考訳): Conversational Recommender Systems (CRSs) は、ユーザーと対話して適切なレコメンデーションを提供するためのシステムである。
従来のCRSは好みの抽出やアイテムの検索に重点を置いているが、現実のeコマースの相互作用はより複雑な意思決定を伴う。
この複雑さを捉えるために、我々は、一貫した会話フレームワークに好みの誘惑、推薦、説得を統合する新しいタスクである会話販売(CSALES)を紹介した。
現実的かつ体系的な評価を支援するため,実世界の行動データに基づくLCMベースのユーザシミュレータを用いた評価プロトコルCSUSERについて,パーソナライズされたインタラクションのためのきめ細かいユーザプロファイルをモデル化して提案する。
また,文脈的ユーザプロファイルを積極的に推測し,会話を通じて戦略的に行動を選択する対話販売エージェントであるCSIを提案する。
総合的な実験により、CSIは様々なユーザープロファイルにわたる推薦の成功と説得力の両方を著しく改善することが示された。
関連論文リスト
- Search-Based Interaction For Conversation Recommendation via Generative Reward Model Based Simulated User [117.82681846559909]
会話レコメンデーションシステム(CRS)は、マルチターンインタラクションを使用してユーザの好みを捉え、パーソナライズされたレコメンデーションを提供する。
本稿では,CRSと自動インタラクションを行うための生成報酬モデルに基づくシミュレーションユーザGRSUを提案する。
論文 参考訳(メタデータ) (2025-04-29T06:37:30Z) - Exploring Personality-Aware Interactions in Salesperson Dialogue Agents [21.282523537612477]
本研究では,Mers-Briggs Type Indicator (MBTI) を用いて定義したユーザペルソナが,営業指向対話エージェントのインタラクション品質とパフォーマンスに与える影響について検討する。
本研究は,対話のダイナミクス,タスク完了率,対話自然性の顕著なパターンを明らかにし,対話エージェントが戦略を洗練させる可能性を明らかにするものである。
論文 参考訳(メタデータ) (2025-04-25T04:10:25Z) - Exploring the Impact of Personality Traits on Conversational Recommender Systems: A Simulation with Large Language Models [70.180385882195]
本稿では,対話型レコメンダシステム(CRS)のためのパーソナリティを考慮したユーザシミュレーションを提案する。
ユーザエージェントはカスタマイズ可能な性格特性と嗜好を誘導し、システムエージェントはCRS内の現実的な相互作用をシミュレートする説得能力を有する。
実験により,現在最先端のLCMは,特定の性格特性に適合した多様なユーザ応答を効果的に生成できることが示された。
論文 参考訳(メタデータ) (2025-04-09T13:21:17Z) - Enhancing Personalized Multi-Turn Dialogue with Curiosity Reward [11.495697919066341]
ポリシーエージェントは、ユーザの好み、性格、属性に合った振る舞いをパーソナライズできなければならない。
Reinforcement Learning from Human Feedback (RLHF)のような現在のトレーニング手法は、有用性と安全性を優先しているが、真に共感的で適応的でパーソナライズされた相互作用を育むには不足している。
マルチターンRLHFとともに,会話エージェントのユーザモデルを改善するための本質的なモチベーションを付加することを提案する。
論文 参考訳(メタデータ) (2025-04-04T06:35:02Z) - Salespeople vs SalesBot: Exploring the Role of Educational Value in
Conversational Recommender Systems [78.84530426424838]
既存の会話レコメンデータシステムは、ユーザのバックグラウンド知識の欠如をよく見落とし、好みの収集にのみ焦点をあてる。
このようなシステムのシミュレーションと評価を容易にするフレームワークであるSalesOpsを紹介する。
私たちは、フレームワークの両側をシミュレートできるLLMベースのエージェントであるSalesBotとShopperBotを構築しています。
論文 参考訳(メタデータ) (2023-10-26T19:44:06Z) - Conversational Recommender System and Large Language Model Are Made for Each Other in E-commerce Pre-sales Dialogue [80.51690477289418]
会話推薦システム(CRS)は、ユーザ表現を学習し、対話コンテキストに基づいて正確なレコメンデーションを提供するが、外部知識に依存している。
大規模言語モデル(LLM)は、微調整後の事前販売の対話を模倣する応答を生成するが、正確なレコメンデーションのためのドメイン固有の知識は欠如している。
本稿では,eコマース事前販売対話におけるLCMとCRSの組み合わせの有効性について検討する。
論文 参考訳(メタデータ) (2023-10-23T07:00:51Z) - AgentCF: Collaborative Learning with Autonomous Language Agents for
Recommender Systems [112.76941157194544]
本稿では,エージェントベースの協調フィルタリングにより,レコメンデータシステムにおけるユーザとイテムのインタラクションをシミュレートするエージェントCFを提案する。
我々は、ユーザだけでなく、アイテムをエージェントとして、創造的に考慮し、両方のエージェントを同時に最適化する協調学習アプローチを開発します。
全体として、最適化されたエージェントは、ユーザ・イテム、ユーザ・ユーザ・ユーザ、アイテム・イテム、集合的インタラクションなど、フレームワーク内での多様なインタラクションの振る舞いを示す。
論文 参考訳(メタデータ) (2023-10-13T16:37:14Z) - U-NEED: A Fine-grained Dataset for User Needs-Centric E-commerce
Conversational Recommendation [59.81301478480005]
現実のEコマースシナリオからユーザニーズ中心のEコマース対話推薦データセット(U-NEED)を構築した。
U-NEEDは,5つのカテゴリ (ii) 333,879のユーザ行動と, (iii) 332,148の製品知識の3種類のリソースで構成されている。
論文 参考訳(メタデータ) (2023-05-05T01:44:35Z) - COLA: Improving Conversational Recommender Systems by Collaborative
Augmentation [9.99763097964222]
アイテム表現学習とユーザ嗜好モデリングの両方を改善するために,協調的拡張(COLA)手法を提案する。
すべての会話から対話型ユーザテムグラフを構築し,ユーザ認識情報によってアイテム表現を拡大する。
ユーザの嗜好モデルを改善するため,学習コーパスから類似した会話を検索し,ユーザの興味を反映した関連項目や属性を用いてユーザ表現を増強する。
論文 参考訳(メタデータ) (2022-12-15T12:37:28Z) - User-Centric Conversational Recommendation with Multi-Aspect User
Modeling [47.310579802092384]
CRSタスクにおけるユーザの嗜好学習の本質に回帰するユーザ中心会話推薦(UCCR)モデルを提案する。
複数視点の選好マッパーを用いて,現在および歴史的セッションにおける異なる視点の内在的相関を学習する。
学習したマルチアスペクトのマルチビューユーザ嗜好は、レコメンデーションと対話生成に使用される。
論文 参考訳(メタデータ) (2022-04-20T07:08:46Z) - Conversational Recommendation: Theoretical Model and Complexity Analysis [6.084774669743511]
理論的にドメインに依存しない会話推薦モデルを提案する。
効率的な会話戦略の発見はNPハードであることが示される。
また,カタログの特徴が個々の対話戦略の効率性に強く影響を与えることを示す。
論文 参考訳(メタデータ) (2021-11-10T09:05:52Z) - A Cooperative Memory Network for Personalized Task-oriented Dialogue
Systems with Incomplete User Profiles [55.951126447217526]
ユーザプロファイルの完成を前提とせず,タスク指向対話システムについて検討する。
ユーザプロファイルを徐々に強化する新しいメカニズムを持つ協調記憶ネットワーク(CoMemNN)を提案する。
CoMemNNは、ユーザープロファイルを効果的に強化することができ、応答選択精度の点で3.6%の改善につながります。
論文 参考訳(メタデータ) (2021-02-16T18:05:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。