論文の概要: Towards On-Device Learning and Reconfigurable Hardware Implementation for Encoded Single-Photon Signal Processing
- arxiv url: http://arxiv.org/abs/2504.09028v1
- Date: Sat, 12 Apr 2025 00:58:52 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-15 16:49:24.209628
- Title: Towards On-Device Learning and Reconfigurable Hardware Implementation for Encoded Single-Photon Signal Processing
- Title(参考訳): シングル光信号処理のためのオンデバイス学習と再構成可能なハードウェア実装に向けて
- Authors: Zhenya Zang, Xingda Li, David Day Uei Li,
- Abstract要約: ワンシッド・ジャコビ回転型オンラインシーケンス・エクストリーム・ラーニング・マシン(OSOS-ELM)に基づくオンライン・トレーニング・アルゴリズムを提案する。
我々は、ARMコアを統合した異種FPGA上でOSOS-ELMを実行する際の並列性を完全に活用する。
単一光子信号解析を含む3つのケーススタディにより,本手法の有効性を検証した。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Deep neural networks (DNNs) enhance the accuracy and efficiency of reconstructing key parameters from time-resolved photon arrival signals recorded by single-photon detectors. However, the performance of conventional backpropagation-based DNNs is highly dependent on various parameters of the optical setup and biological samples under examination, necessitating frequent network retraining, either through transfer learning or from scratch. Newly collected data must also be stored and transferred to a high-performance GPU server for retraining, introducing latency and storage overhead. To address these challenges, we propose an online training algorithm based on a One-Sided Jacobi rotation-based Online Sequential Extreme Learning Machine (OSOS-ELM). We fully exploit parallelism in executing OSOS-ELM on a heterogeneous FPGA with integrated ARM cores. Extensive evaluations of OSOS-ELM and OSELM demonstrate that both achieve comparable accuracy across different network dimensions (i.e., input, hidden, and output layers), while OSOS-ELM proves to be more hardware-efficient. By leveraging the parallelism of OSOS-ELM, we implement a holistic computing prototype on a Xilinx ZCU104 FPGA, which integrates a multi-core CPU and programmable logic fabric. We validate our approach through three case studies involving single-photon signal analysis: sensing through fog using commercial single-photon LiDAR, fluorescence lifetime estimation in FLIM, and blood flow index reconstruction in DCS, all utilizing one-dimensional data encoded from photonic signals. From a hardware perspective, we optimize the OSOS-ELM workload by employing multi-tasked processing on ARM CPU cores and pipelined execution on the FPGA's logic fabric. We also implement our OSOS-ELM on the NVIDIA Jetson Xavier NX GPU to comprehensively investigate its computing performance on another type of heterogeneous computing platform.
- Abstract(参考訳): ディープニューラルネットワーク(DNN)は、単一光子検出器によって記録された時間分解光子到着信号から鍵パラメータを再構築する精度と効率を高める。
しかし、従来のバックプロパゲーションベースのDNNの性能は、光学装置の様々なパラメータと、検査中の生物学的サンプルに大きく依存しており、転送学習またはスクラッチによる頻繁なネットワーク再トレーニングを必要としている。
新たな収集されたデータは、遅延とストレージオーバーヘッドを導入し、再トレーニングするために、高性能なGPUサーバに格納され、転送される必要がある。
これらの課題に対処するため、我々はワンシッド・ジャコビ回転に基づくオンラインシーケンス・エクストリーム・ラーニング・マシン(OSOS-ELM)に基づくオンライン・トレーニング・アルゴリズムを提案する。
我々は、ARMコアを統合した異種FPGA上でOSOS-ELMを実行する際の並列性を完全に活用する。
OSOS-ELMとOSELMの大規模な評価は、両者が異なるネットワーク次元(例えば、入力、隠蔽、出力層)で同等の精度を達成していることを示し、OSOS-ELMはよりハードウェア効率が良いことを証明している。
OSOS-ELMの並列性を活用することで,マルチコアCPUとプログラム可能な論理ファブリックを統合した Xilinx ZCU104 FPGA 上で,総合計算のプロトタイプを実装した。
商業用単光子LiDARを用いた霧中センシング,FLIMによる蛍光寿命推定,DCSにおける血流指標再構成,光信号から符号化した1次元データを利用した3つのケーススタディにより,本手法の有効性を検証した。
ハードウェアの観点からは、ARM CPUコアにマルチタスク処理を導入し、FPGAのロジックファブリック上でパイプライン実行することにより、OSOS-ELMのワークロードを最適化する。
また、NVIDIA Jetson Xavier NX GPU上でOSOS-ELMを実装し、別の種類の異種コンピューティングプラットフォーム上での計算性能を包括的に調査する。
関連論文リスト
- Unlocking Real-Time Fluorescence Lifetime Imaging: Multi-Pixel Parallelism for FPGA-Accelerated Processing [2.369919866595525]
FPGAベースのハードウェアアクセラレーターを用いてリアルタイムFLIを実現する手法を提案する。
我々は、時間分解カメラと互換性のあるFPGAボード上に、GRUベースのシーケンス・ツー・シーケンス(Seq2Seq)モデルを実装した。
GRUベースのSeq2Seqモデルと、Seq2SeqLiteと呼ばれる圧縮されたバージョンを統合することで、複数のピクセルを並列に処理することができ、シーケンシャル処理と比較して遅延を低減できた。
論文 参考訳(メタデータ) (2024-10-09T18:24:23Z) - Efficient and accurate neural field reconstruction using resistive memory [52.68088466453264]
デジタルコンピュータにおける従来の信号再構成手法は、ソフトウェアとハードウェアの両方の課題に直面している。
本稿では,スパース入力からの信号再構成のためのソフトウェア・ハードウェア協調最適化を用いた体系的アプローチを提案する。
この研究は、AI駆動の信号復元技術を進歩させ、将来の効率的で堅牢な医療AIと3Dビジョンアプリケーションへの道を開く。
論文 参考訳(メタデータ) (2024-04-15T09:33:09Z) - Exploiting FPGA Capabilities for Accelerated Biomedical Computing [0.0]
本研究では、フィールドプログラマブルゲートアレイ(FPGA)を用いたECG信号解析のための高度なニューラルネットワークアーキテクチャを提案する。
我々は、トレーニングと検証にMIT-BIH Arrhythmia Databaseを使用し、堅牢性を改善するためにガウスノイズを導入した。
この研究は最終的に、様々なアプリケーションのためのFPGA上でのニューラルネットワーク性能を最適化するためのガイドを提供する。
論文 参考訳(メタデータ) (2023-07-16T01:20:17Z) - Implementing Neural Network-Based Equalizers in a Coherent Optical
Transmission System Using Field-Programmable Gate Arrays [3.1543509940301946]
我々は、コヒーレント光伝送システムにおける非線形性補償のための、リカレントおよびフィードフォワードニューラルネットワーク(NN)ベースの等化器のオフラインFPGA実現について述べる。
主な結果は、性能比較、アクティベーション関数の実装方法の分析、ハードウェアの複雑さに関するレポートの3つに分けられる。
論文 参考訳(メタデータ) (2022-12-09T07:28:45Z) - Intelligence Processing Units Accelerate Neuromorphic Learning [52.952192990802345]
スパイキングニューラルネットワーク(SNN)は、エネルギー消費と遅延の観点から、桁違いに改善されている。
我々は、カスタムSNN PythonパッケージsnnTorchのIPU最適化リリースを提示する。
論文 参考訳(メタデータ) (2022-11-19T15:44:08Z) - Learning with Multigraph Convolutional Filters [153.20329791008095]
MSPモデルに基づいて情報を処理する階層構造として多グラフ畳み込みニューラルネットワーク(MGNN)を導入する。
また,MGNNにおけるフィルタ係数のトラクタブルな計算手法と,レイヤ間で転送される情報の次元性を低減するための低コストな手法を開発した。
論文 参考訳(メタデータ) (2022-10-28T17:00:50Z) - GLEAM: Greedy Learning for Large-Scale Accelerated MRI Reconstruction [50.248694764703714]
アンロールされたニューラルネットワークは、最近最先端の加速MRI再構成を達成した。
これらのネットワークは、物理ベースの一貫性とニューラルネットワークベースの正規化を交互に組み合わせることで、反復最適化アルゴリズムをアンロールする。
我々は,高次元画像設定のための効率的なトレーニング戦略である加速度MRI再構成のためのグレディ・ラーニングを提案する。
論文 参考訳(メタデータ) (2022-07-18T06:01:29Z) - An Adaptive Device-Edge Co-Inference Framework Based on Soft
Actor-Critic [72.35307086274912]
高次元パラメータモデルと大規模数学的計算は、特にIoT(Internet of Things)デバイスにおける実行効率を制限する。
本稿では,ソフトポリシーの繰り返しによるエフェキシット点,エフェキシット点,エンフェキシット点を生成する離散的(SAC-d)のための新しい深層強化学習(DRL)-ソフトアクタ批判法を提案する。
レイテンシと精度を意識した報酬設計に基づいて、そのような計算は動的無線チャンネルや任意の処理のような複雑な環境によく適応でき、5G URLをサポートすることができる。
論文 参考訳(メタデータ) (2022-01-09T09:31:50Z) - A Graph Deep Learning Framework for High-Level Synthesis Design Space
Exploration [11.154086943903696]
High-Level Synthesisは、アプリケーション固有の高速プロトタイピングのためのソリューションである。
本稿では,加速性能とハードウェアコストを共同で予測するグラフニューラルネットワークHLSを提案する。
提案手法は,一般的なシミュレータと同等の精度で予測できることを示す。
論文 参考訳(メタデータ) (2021-11-29T18:17:45Z) - One-step regression and classification with crosspoint resistive memory
arrays [62.997667081978825]
高速で低エネルギーのコンピュータは、エッジでリアルタイム人工知能を実現するために要求されている。
ワンステップ学習は、ボストンの住宅のコスト予測と、MNIST桁認識のための2層ニューラルネットワークのトレーニングによって支援される。
結果は、クロスポイントアレイ内の物理計算、並列計算、アナログ計算のおかげで、1つの計算ステップで得られる。
論文 参考訳(メタデータ) (2020-05-05T08:00:07Z) - GraphACT: Accelerating GCN Training on CPU-FPGA Heterogeneous Platforms [1.2183405753834562]
グラフ畳み込みネットワーク(GCN)は、グラフ上での表現学習のための最先端のディープラーニングモデルとして登場した。
実質的かつ不規則なデータ通信のため、GCNの訓練を加速することは困難である。
我々はCPU-FPGAヘテロジニアスシステム上でGCNをトレーニングするための新しいアクセラレータを設計する。
論文 参考訳(メタデータ) (2019-12-31T21:19:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。