論文の概要: Beyond Glucose-Only Assessment: Advancing Nocturnal Hypoglycemia Prediction in Children with Type 1 Diabetes
- arxiv url: http://arxiv.org/abs/2504.09299v1
- Date: Sat, 12 Apr 2025 18:07:40 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-15 16:49:17.382603
- Title: Beyond Glucose-Only Assessment: Advancing Nocturnal Hypoglycemia Prediction in Children with Type 1 Diabetes
- Title(参考訳): 1型糖尿病児の夜間低血糖予測の改善
- Authors: Marco Voegeli, Sonia Laguna, Heike Leutheuser, Marc Pfister, Marie-Anne Burckhardt, Julia E Vogt,
- Abstract要約: デッド・イン・ベッド症候群は1型糖尿病(T1D)の若年者で、長期合併症を伴わない突然の死亡を示す。
1つの主要な仮説は、睡眠中の血糖値の危険な低下である夜間低血糖(NH)によるものである。
本研究の目的は、生理的データと機械学習(ML)技術を活用して、T1Dの小児におけるNH予測を改善することである。
- 参考スコア(独自算出の注目度): 8.198743716856807
- License:
- Abstract: The dead-in-bed syndrome describes the sudden and unexplained death of young individuals with Type 1 Diabetes (T1D) without prior long-term complications. One leading hypothesis attributes this phenomenon to nocturnal hypoglycemia (NH), a dangerous drop in blood glucose during sleep. This study aims to improve NH prediction in children with T1D by leveraging physiological data and machine learning (ML) techniques. We analyze an in-house dataset collected from 16 children with T1D, integrating physiological metrics from wearable sensors. We explore predictive performance through feature engineering, model selection, architectures, and oversampling. To address data limitations, we apply transfer learning from a publicly available adult dataset. Our results achieve an AUROC of 0.75 +- 0.21 on the in-house dataset, further improving to 0.78 +- 0.05 with transfer learning. This research moves beyond glucose-only predictions by incorporating physiological parameters, showcasing the potential of ML to enhance NH detection and improve clinical decision-making for pediatric diabetes management.
- Abstract(参考訳): デッド・イン・ベッド症候群は1型糖尿病(T1D)の若年者で、長期合併症を伴わない突然の死亡を示す。
1つの主要な仮説は、睡眠中の血糖値の危険な低下である夜間低血糖(NH)によるものである。
本研究の目的は、生理的データと機械学習(ML)技術を活用して、T1Dの小児におけるNH予測を改善することである。
我々は、T1Dを持つ16人の子供の家庭内データセットを分析し、ウェアラブルセンサーの生理的指標を統合した。
機能エンジニアリング、モデル選択、アーキテクチャ、オーバーサンプリングによる予測パフォーマンスについて検討する。
データ制限に対処するため、公開されている成人データセットから転送学習を適用する。
その結果,AUROCは社内データセットで0.75+-0.21となり,転送学習により0.78+-0.05に向上した。
本研究は、生理的パラメータを取り入れたグルコースのみの予測を超越し、MLの可能性を示し、NH検出を強化し、小児糖尿病管理のための臨床的意思決定を改善する。
関連論文リスト
- Let Curves Speak: A Continuous Glucose Monitor based Large Sensor Foundation Model for Diabetes Management [3.8195320624847833]
AIと継続的グルコースモニタリングを統合することは、近い将来のグルコース予測を約束する。
CGM-LSMは592人の糖尿病患者からの1596万のブドウ糖の記録に基づいて、近未来のグルコース予測のために事前訓練されている。
LSMは1型糖尿病患者29.81mg/dL、23.49mg/dLである。
論文 参考訳(メタデータ) (2024-12-12T21:35:13Z) - From Glucose Patterns to Health Outcomes: A Generalizable Foundation Model for Continuous Glucose Monitor Data Analysis [47.23780364438969]
本稿では,CGMデータの生成基盤モデルであるGluFormerについて紹介する。
GluFormerは、異なる民族や年齢、5つの国、8つのCGMデバイス、多様な病態状態にまたがる19の外部コホートに一般化する。
CGMデータと12年間のフォローアップを持つ580人の成人の縦断的研究において、GluFormerは血液HbA1C%よりも糖尿病を効果的に発症するリスクが高い個人を特定する。
論文 参考訳(メタデータ) (2024-08-20T13:19:06Z) - Using Pre-training and Interaction Modeling for ancestry-specific disease prediction in UK Biobank [69.90493129893112]
近年のゲノムワイド・アソシエーション(GWAS)研究は、複雑な形質の遺伝的基盤を明らかにしているが、非ヨーロッパ系個体の低発現を示している。
そこで本研究では,マルチオミクスデータを用いて,多様な祖先間での疾患予測を改善することができるかを評価する。
論文 参考訳(メタデータ) (2024-04-26T16:39:50Z) - Supervised Learning Models for Early Detection of Albuminuria Risk in
Type-2 Diabetes Mellitus Patients [0.0]
本研究の目的は,T2DM患者にアルブミン尿を発症するリスクを予測するための教師付き学習モデルを開発することである。
特徴として10の属性、目標として1の属性(アルブミン尿症)から構成される。
これはそれぞれ0.74と0.75の精度とf1スコアの値を達成し、T2DMの尿失調を予測するためのスクリーニングに適していた。
論文 参考訳(メタデータ) (2023-09-28T08:41:12Z) - Machine Learning-Based Diabetes Detection Using Photoplethysmography
Signal Features [0.0]
糖尿病は世界中で何百万人もの人々の健康を損なう慢性疾患である。
そこで本研究では,非侵襲性光胸腺撮影による糖尿病検出の問題点を克服する別の方法を提案する。
PPG信号とアルゴリズムを用いて非糖尿病患者と糖尿病患者を分類し,ロジスティック回帰とeXtreme Gradient Boostingを訓練した。
以上の結果から,糖尿病の検出・予防のための遠隔・非侵襲・連続計測装置の開発に機械学習が期待できることが示唆された。
論文 参考訳(メタデータ) (2023-08-02T14:10:03Z) - Machine Learning based prediction of Glucose Levels in Type 1 Diabetes
Patients with the use of Continuous Glucose Monitoring Data [0.0]
連続グルコースモニタリング(Continuous Glucose Monitoring, CGM)デバイスは、患者の血糖値に関する詳細な、非侵襲的でリアルタイムな洞察を提供する。
将来のグルコースレベルの予測方法としての高度な機械学習(ML)モデルを活用することで、生活改善の実質的な品質がもたらされる。
論文 参考訳(メタデータ) (2023-02-24T19:10:40Z) - Learning to diagnose cirrhosis from radiological and histological labels
with joint self and weakly-supervised pretraining strategies [62.840338941861134]
そこで本稿では, 放射線学者が注釈付けした大規模データセットからの転写学習を活用して, 小さい付加データセットで利用できる組織学的スコアを予測することを提案する。
我々は,肝硬変の予測を改善するために,異なる事前訓練法,すなわち弱い指導法と自己指導法を比較した。
この方法は、METAVIRスコアのベースライン分類を上回り、AUCが0.84、バランスの取れた精度が0.75に達する。
論文 参考訳(メタデータ) (2023-02-16T17:06:23Z) - Building Brains: Subvolume Recombination for Data Augmentation in Large
Vessel Occlusion Detection [56.67577446132946]
この戦略をデータから学ぶためには、標準的なディープラーニングベースのモデルに対して、大規模なトレーニングデータセットが必要である。
そこで本研究では, 異なる患者から血管木セグメントを組換えることで, 人工的なトレーニングサンプルを生成する方法を提案する。
拡張スキームに則って,タスク固有の入力を入力した3D-DenseNetを用いて,半球間の比較を行う。
論文 参考訳(メタデータ) (2022-05-05T10:31:57Z) - GLYFE: Review and Benchmark of Personalized Glucose Predictive Models in
Type-1 Diabetes [4.17510581764131]
GLYFEは機械学習に基づくグルコース予測モデルのベンチマークである。
ブドウ糖沈降の文献から得られた9つの異なるモデルの結果を報告する。
論文 参考訳(メタデータ) (2020-06-29T11:34:41Z) - 1-D Convlutional Neural Networks for the Analysis of Pupil Size
Variations in Scotopic Conditions [79.71065005161566]
1次元畳み込みニューラルネットワークモデルは、短距離配列の分類のために訓練されている。
モデルは、ホールドアウトテストセット上で、高い平均精度で予測を提供する。
論文 参考訳(メタデータ) (2020-02-06T17:25:37Z) - Short Term Blood Glucose Prediction based on Continuous Glucose
Monitoring Data [53.01543207478818]
本研究では,デジタル意思決定支援ツールの入力として連続グルコースモニタリング(Continuous Glucose Monitoring, CGM)データを利用する方法について検討する。
短時間の血液グルコース (STBG) 予測において, リカレントニューラルネットワーク (Recurrent Neural Networks, RNN) をどのように利用できるかを検討する。
論文 参考訳(メタデータ) (2020-02-06T16:39:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。