論文の概要: Inferring Outcome Means of Exponential Family Distributions Estimated by Deep Neural Networks
- arxiv url: http://arxiv.org/abs/2504.09347v1
- Date: Sat, 12 Apr 2025 21:32:42 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-23 07:59:50.386595
- Title: Inferring Outcome Means of Exponential Family Distributions Estimated by Deep Neural Networks
- Title(参考訳): ディープニューラルネットワークによる指数族分布のアウトカム平均の推定
- Authors: Xuran Meng, Yi Li,
- Abstract要約: カテゴリーまたは指数関数的な家族結果の推定手段に関する推測は、まだ未定である。
本稿では,ノイズの異なるレジームに分割するトラルニケーション手法を提案する。
本手法をeICUデータセットからの実世界データに適用し,患者のリスクを予測する。
- 参考スコア(独自算出の注目度): 5.909780773881451
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Despite the widespread use of deep neural networks (DNNs) for prediction, inference on estimated means for categorical or exponential family outcomes remains underexplored. We address this gap by framing the problem within the generalized linear models (GLMs) framework and developing a rigorous statistical approach for inference on DNN-estimated means. To address a key limitation of assuming independence between prediction errors and input variables in the literature, which often fails in GLMs, we introduce a truncation technique that partitions the problem into regimes with distinct noise behaviors, enabling refined analysis and robust theoretical guarantees under general GLM frameworks. To implement inference, we consider an Ensemble Subsampling Method (ESM) that leverages U-statistics and the Hoeffding decomposition to construct reliable confidence intervals. This method enables model-free variance estimation and accounts for heterogeneity among individuals in the population. Through extensive simulations across Binary, Poisson and Binomial models, we demonstrate the effectiveness and efficiency of our method. We further apply the method to real-world data from the eICU dataset to predict patient readmission risks, providing actionable insights for clinical decision-making.
- Abstract(参考訳): 予測にディープニューラルネットワーク(DNN)が広く使われているにもかかわらず、カテゴリーまたは指数関数的な家族結果の見積もり手段はいまだに探索されていない。
一般化線形モデル(GLMs)フレームワーク内の問題をフレーミングし、DNN推定手法に基づく推論のための厳密な統計的アプローチを開発することにより、このギャップに対処する。
GLMでは,予測誤差と入力変数の独立性を仮定する鍵となる限界に対処するため,一般のGLMフレームワークにおいて,ノイズ特性の異なる規則に分割し,洗練された解析と堅牢な理論的保証を可能にするトランケーション手法を提案する。
提案手法は,U-statistics と Hoeffding の分解を利用して信頼性の高い信頼区間を構築する手法である。
この方法により、モデルフリーな分散推定が可能となり、集団内の個人間の不均一性を説明できる。
二項モデル、ポアソンモデル、二項モデルにまたがる広範囲なシミュレーションを通して、本手法の有効性と効率を実証する。
さらに,eICUデータセットから得られた実世界のデータを用いて患者の寛解リスクを予測し,臨床的意思決定に有効な知見を提供する。
関連論文リスト
- Evidential Uncertainty Probes for Graph Neural Networks [3.5169632430086315]
グラフニューラルネットワーク(GNN)における不確実性定量化のためのプラグアンドプレイフレームワークを提案する。
Evidential Probing Network (EPN) は、学習した表現から証拠を抽出するために軽量なMulti-Layer-Perceptron (MLP) ヘッドを使用する。
EPN-regは、正確で効率的な不確実性定量化において最先端のパフォーマンスを実現し、現実世界のデプロイメントに適している。
論文 参考訳(メタデータ) (2025-03-11T07:00:54Z) - Testing and Improving the Robustness of Amortized Bayesian Inference for Cognitive Models [0.5223954072121659]
汚染物質観測とアウトリーチは、認知モデルのパラメータを推定する際にしばしば問題を引き起こす。
本研究では,アモルタイズされたベイズ推定を用いたパラメータ推定のロバスト性を検証・改善する。
提案手法は実装が簡単で実用的であり,外乱検出や除去が困難な分野に適用可能である。
論文 参考訳(メタデータ) (2024-12-29T21:22:24Z) - HNCI: High-Dimensional Network Causal Inference [4.024850952459758]
本稿では, 平均的直接治療効果に対する有効信頼区間と, 干渉効果に対する有効信頼区間とを両立する高次元ネットワーク因果推論(HNCI)を提案する。
論文 参考訳(メタデータ) (2024-12-24T17:41:41Z) - Estimating the treatment effect over time under general interference through deep learner integrated TMLE [7.2615408834692685]
DeepNetTMLE(DeepNetTMLE)は,ディープラーニングによる最大等量推定(TMLE)手法である。
DeepNetTMLEは、一般的な干渉の下で、時間によって変化する共同創設者のバイアスを軽減する。
我々は,DeepNetTMLEが,反実推定においてより低いバイアスとより正確な信頼区間を実現することを示す。
論文 参考訳(メタデータ) (2024-12-06T06:09:43Z) - Stratified Prediction-Powered Inference for Hybrid Language Model Evaluation [62.2436697657307]
予測駆動推論(英: Prediction-powered Inference, PPI)は、人間ラベル付き限られたデータに基づいて統計的推定を改善する手法である。
我々はStratPPI(Stratified Prediction-Powered Inference)という手法を提案する。
単純なデータ階層化戦略を用いることで,基礎的なPPI推定精度を大幅に向上できることを示す。
論文 参考訳(メタデータ) (2024-06-06T17:37:39Z) - Distributionally Robust Skeleton Learning of Discrete Bayesian Networks [9.46389554092506]
我々は、潜在的に破損したデータから一般的な離散ベイズネットワークの正確なスケルトンを学習する問題を考察する。
本稿では,有界ワッサーシュタイン距離(KL)における分布群に対する最も有害なリスクを,経験的分布へのKL分散を最適化することを提案する。
本稿では,提案手法が標準正規化回帰手法と密接に関連していることを示す。
論文 参考訳(メタデータ) (2023-11-10T15:33:19Z) - MedDiffusion: Boosting Health Risk Prediction via Diffusion-based Data
Augmentation [58.93221876843639]
本稿では,MedDiffusion という,エンドツーエンドの拡散に基づくリスク予測モデルを提案する。
トレーニング中に合成患者データを作成し、サンプルスペースを拡大することで、リスク予測性能を向上させる。
ステップワイズ・アテンション・メカニズムを用いて患者の来訪者間の隠れた関係を識別し、高品質なデータを生成する上で最も重要な情報をモデルが自動的に保持することを可能にする。
論文 参考訳(メタデータ) (2023-10-04T01:36:30Z) - Distributional Shift-Aware Off-Policy Interval Estimation: A Unified
Error Quantification Framework [8.572441599469597]
本研究では、無限水平マルコフ決定過程の文脈における高信頼オフ政治評価について検討する。
目的は、未知の行動ポリシーから事前に収集されたオフラインデータのみを用いて、対象の政策値に対する信頼区間(CI)を確立することである。
提案アルゴリズムは, 非線形関数近似設定においても, サンプル効率, 誤差ローバスト, 既知収束性を示す。
論文 参考訳(メタデータ) (2023-09-23T06:35:44Z) - Uncertainty Quantification for Molecular Property Predictions with Graph Neural Architecture Search [2.711812013460678]
本稿では,分子特性予測のための自動不確実性定量化(UQ)手法であるAutoGNNUQを紹介する。
我々のアプローチでは、分散分解を用いてデータ(アラート)とモデル(エステミック)の不確実性を分離し、それらを減らすための貴重な洞察を提供する。
AutoGNNUQは、正確な不確実性定量化が意思決定に不可欠である薬物発見や材料科学などの領域で広く適用可能である。
論文 参考訳(メタデータ) (2023-07-19T20:03:42Z) - Excess risk analysis for epistemic uncertainty with application to
variational inference [110.4676591819618]
我々は、未知の分布からデータが生成される頻繁なセッティングにおいて、新しいEU分析を提示する。
一般化能力と、予測分布の分散やエントロピーなど、広く使用されているEUの測定値との関係を示す。
本研究では,PAC-ベイジアン理論に基づく予測とEU評価性能を直接制御する新しい変分推論を提案する。
論文 参考訳(メタデータ) (2022-06-02T12:12:24Z) - Reinforcement Learning with Heterogeneous Data: Estimation and Inference [84.72174994749305]
人口の不均一性に関する逐次的決定問題に対処するために,K-ヘテロ・マルコフ決定過程(K-ヘテロ・MDP)を導入する。
本稿では、ある政策の価値を推定するための自己クラスタ化政策評価(ACPE)と、ある政策クラスにおける最適な政策を推定するための自己クラスタ化政策イテレーション(ACPI)を提案する。
理論的な知見を裏付けるシミュレーションを行い,MIMIC-III標準データセットの実証的研究を行った。
論文 参考訳(メタデータ) (2022-01-31T20:58:47Z) - Dimension-Free Average Treatment Effect Inference with Deep Neural
Networks [6.704751710867747]
本稿では,Deep Neural Network (DNN) を用いた平均治療効果 (ATE) の推定と推定について検討する。
本稿では, ATE の DNN 推定値と次元自由整合率との整合性を示す。
論文 参考訳(メタデータ) (2021-12-02T19:28:37Z) - Counterfactual Maximum Likelihood Estimation for Training Deep Networks [83.44219640437657]
深層学習モデルは、予測的手がかりとして学習すべきでない急激な相関を学習する傾向がある。
本研究では,観測可能な共同設立者による相関関係の緩和を目的とした因果関係に基づくトレーニングフレームワークを提案する。
自然言語推論(NLI)と画像キャプションという2つの実世界の課題について実験を行った。
論文 参考訳(メタデータ) (2021-06-07T17:47:16Z) - Interpretable Social Anchors for Human Trajectory Forecasting in Crowds [84.20437268671733]
本研究では,人混みの軌跡を予測できるニューラルネットワークシステムを提案する。
解釈可能なルールベースのインテントを学び、ニューラルネットワークの表現可能性を利用してシーン固有の残差をモデル化する。
私たちのアーキテクチャは、インタラクション中心のベンチマークTrajNet++でテストされています。
論文 参考訳(メタデータ) (2021-05-07T09:22:34Z) - UNITE: Uncertainty-based Health Risk Prediction Leveraging Multi-sourced
Data [81.00385374948125]
我々はUNcertaInTyベースのhEalth Risk Prediction(UNITE)モデルを提案する。
UNITEは、複数ソースの健康データを活用した正確な疾患リスク予測と不確実性推定を提供する。
非アルコール性脂肪肝疾患(NASH)とアルツハイマー病(AD)の実態予測タスクにおけるUNITEの評価を行った。
UNITEはAD検出のF1スコアで最大0.841点、NASH検出のPR-AUCで最大0.609点を達成し、最高のベースラインで最大19%の高パフォーマンスを達成している。
論文 参考訳(メタデータ) (2020-10-22T02:28:11Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
後続正則化に基づく近似ベイズ推定法を開発した。
前立腺癌の予後モデルを世界規模で導入する上で,本手法の有用性を実証する。
論文 参考訳(メタデータ) (2020-06-26T13:50:19Z) - Frequentist Uncertainty in Recurrent Neural Networks via Blockwise
Influence Functions [121.10450359856242]
リカレントニューラルネットワーク(RNN)は、シーケンシャルおよび時系列データのモデリングに有効である。
RNNにおける既存の不確実性定量化のアプローチは、主にベイズ法に基づいている。
a)モデルトレーニングに干渉せず、その精度を損なうことなく、(b)任意のRNNアーキテクチャに適用し、(c)推定不確かさ間隔に関する理論的カバレッジ保証を提供する。
論文 参考訳(メタデータ) (2020-06-20T22:45:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。