Dissipation induced localization-delocalization transition in a flat band
- URL: http://arxiv.org/abs/2504.09444v1
- Date: Sun, 13 Apr 2025 06:02:16 GMT
- Title: Dissipation induced localization-delocalization transition in a flat band
- Authors: Mingdi Xu, Zijun Wei, Xiang-Ping Jiang, Lei Pan,
- Abstract summary: We show that dissipation can be harnessed to induce transitions between extended and localized phases, offering a novel approach to manipulate quantum transport in flat band systems.<n>This work deepens our understanding of dissipation-induced phenomena in flat band systems and also provides a new avenue for controlling quantum states in open systems.
- Score: 4.106350459637523
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The interplay between dissipation and localization in quantum systems has garnered significant attention due to its potential to manipulate transport properties and induce phase transitions. In this work, we explore the dissipation-induced extended-localized transition in a flat band model, where the system's asymptotic state can be controlled by tailored dissipative operators. By analyzing the steady-state density matrix and dissipative dynamics, we demonstrate that dissipation is able to drive the system to states dominated by either extended or localized modes, irrespective of the initial conditions. The control mechanism relies on the phase properties of the dissipative operators, which selectively favor specific eigenstates of the Hamiltonian. Our findings reveal that dissipation can be harnessed to induce transitions between extended and localized phases, offering a novel approach to manipulate quantum transport in flat band systems. This work not only deepens our understanding of dissipation-induced phenomena in flat band systems but also provides a new avenue for controlling quantum states in open systems.
Related papers
- Dephasing-assisted diffusive dynamics in superconducting quantum circuits [14.808613294313902]
We first demonstrate the diffusive dynamics assisted by controlled dephasing noise in superconducting quantum circuits.
We show that dephasing can enhance localization in a superconducting qubit array with quasiperiodic order.
By preparing different excitation distributions in the qubit array, we observe that a more localized initial state relaxes to a uniformly distributed mixed state faster with dephasing noise.
arXiv Detail & Related papers (2024-11-23T14:14:36Z) - Concomitant Entanglement and Control Criticality Driven by Collective Measurements [0.0]
We study Adaptive quantum circuits where a quantum many-body state is controlled using measurements and conditional unitary operations.
We find two types of nonequilibrium quantum phase transitions: measurement-induced transitions between volume- and area-law-entangled steady states and control-induced transitions where the system falls into an absorbing state.
We attribute this feature and the apparent coincidence of the control and entanglement transitions to the global nature of the control.
arXiv Detail & Related papers (2024-09-10T18:00:03Z) - Identification of a natural fieldlike entanglement resource in trapped-ion chains [0.0]
The electromagnetic trapping of ion chains can be regarded as a process of non-trivial entangled quantum state preparation.
The decay of entanglement between disjoint subsets of local modes is found to exhibit features of entanglement structure.
A framework is established for initializing quantum field simulations via "imaging" extended entangled states from natural sources.
arXiv Detail & Related papers (2023-11-15T10:32:02Z) - Dissipation induced extended-localized transition [7.873952265839722]
Mobility edge (ME) represents the critical energy that distinguishes between extended and localized states.
We explore the impact of dissipation on a quasiperiodic system featuring MEs by calculating steady-state density matrix.
Our results establish the use of dissipation as a new avenue for inducing transitions between extended and localized states.
arXiv Detail & Related papers (2023-10-23T13:15:49Z) - Resolving nonclassical magnon composition of a magnetic ground state via
a qubit [44.99833362998488]
We show that a direct dispersive coupling between a qubit and a noneigenmode magnon enables detecting the magnonic number states' quantum superposition.
This unique coupling is found to enable control over the equilibrium magnon squeezing and a deterministic generation of squeezed even Fock states.
arXiv Detail & Related papers (2023-06-08T09:30:04Z) - Entanglement and localization in long-range quadratic Lindbladians [49.1574468325115]
Signatures of localization have been observed in condensed matter and cold atomic systems.
We propose a model of one-dimensional chain of non-interacting, spinless fermions coupled to a local ensemble of baths.
We show that the steady state of the system undergoes a localization entanglement phase transition by tuning $p$ which remains stable in the presence of coherent hopping.
arXiv Detail & Related papers (2023-03-13T12:45:25Z) - Indication of critical scaling in time during the relaxation of an open
quantum system [34.82692226532414]
Phase transitions correspond to the singular behavior of physical systems in response to continuous control parameters like temperature or external fields.
Near continuous phase transitions, associated with the divergence of a correlation length, universal power-law scaling behavior with critical exponents independent of microscopic system details is found.
arXiv Detail & Related papers (2022-08-10T05:59:14Z) - Unconventional mechanism of virtual-state population through dissipation [125.99533416395765]
We report a phenomenon occurring in open quantum systems by which virtual states can acquire a sizable population in the long time limit.
This means that the situation where the virtual state remains unpopulated can be metastable.
We show how these results can be relevant for practical questions such as the generation of stable and metastable entangled states in dissipative systems of interacting qubits.
arXiv Detail & Related papers (2022-02-24T17:09:43Z) - Localisation in quasiperiodic chains: a theory based on convergence of
local propagators [68.8204255655161]
We present a theory of localisation in quasiperiodic chains with nearest-neighbour hoppings, based on the convergence of local propagators.
Analysing the convergence of these continued fractions, localisation or its absence can be determined, yielding in turn the critical points and mobility edges.
Results are exemplified by analysing the theory for three quasiperiodic models covering a range of behaviour.
arXiv Detail & Related papers (2021-02-18T16:19:52Z) - Subdiffusion via Disordered Quantum Walks [52.77024349608834]
We experimentally prove the feasibility of disordered quantum walks to realize a quantum simulator that is able to model general subdiffusive phenomena.
Our experiment simulates such phenomena by means of a finely controlled insertion of various levels of disorder during the evolution of the walker.
This allows us to explore the full range of subdiffusive behaviors, ranging from anomalous Anderson localization to normal diffusion.
arXiv Detail & Related papers (2020-07-24T13:56:09Z) - Universality of entanglement transitions from stroboscopic to continuous
measurements [68.8204255655161]
We show that the entanglement transition at finite coupling persists if the continuously measured system is randomly nonintegrable.
This provides a bridge between a wide range of experimental settings and the wealth of knowledge accumulated for the latter systems.
arXiv Detail & Related papers (2020-05-04T21:45:59Z) - Quantum Zeno effect appears in stages [64.41511459132334]
In the quantum Zeno effect, quantum measurements can block the coherent oscillation of a two level system by freezing its state to one of the measurement eigenstates.
We show that the onset of the Zeno regime is marked by a $textitcascade of transitions$ in the system dynamics as the measurement strength is increased.
arXiv Detail & Related papers (2020-03-23T18:17:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.