Rethinking the generalization of drug target affinity prediction algorithms via similarity aware evaluation
- URL: http://arxiv.org/abs/2504.09481v1
- Date: Sun, 13 Apr 2025 08:30:57 GMT
- Title: Rethinking the generalization of drug target affinity prediction algorithms via similarity aware evaluation
- Authors: Chenbin Zhang, Zhiqiang Hu, Chuchu Jiang, Wen Chen, Jie Xu, Shaoting Zhang,
- Abstract summary: We show that the canonical randomized split of a test set in conventional evaluation leaves the test set dominated by samples with high similarity to the training set.<n>We propose a framework of similarity aware evaluation in which a novel split methodology is proposed to adapt to any desired distribution.<n>Results demonstrate that the proposed split methodology can significantly better fit desired distributions and guide the development of models.
- Score: 19.145735532822012
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Drug-target binding affinity prediction is a fundamental task for drug discovery. It has been extensively explored in literature and promising results are reported. However, in this paper, we demonstrate that the results may be misleading and cannot be well generalized to real practice. The core observation is that the canonical randomized split of a test set in conventional evaluation leaves the test set dominated by samples with high similarity to the training set. The performance of models is severely degraded on samples with lower similarity to the training set but the drawback is highly overlooked in current evaluation. As a result, the performance can hardly be trusted when the model meets low-similarity samples in real practice. To address this problem, we propose a framework of similarity aware evaluation in which a novel split methodology is proposed to adapt to any desired distribution. This is achieved by a formulation of optimization problems which are approximately and efficiently solved by gradient descent. We perform extensive experiments across five representative methods in four datasets for two typical target evaluations and compare them with various counterpart methods. Results demonstrate that the proposed split methodology can significantly better fit desired distributions and guide the development of models. Code is released at https://github.com/Amshoreline/SAE/tree/main.
Related papers
- Leveraging Text-to-Image Generation for Handling Spurious Correlation [24.940576844328408]
Deep neural networks trained with Empirical Risk Minimization (ERM) perform well when both training and test data come from the same domain.<n>ERM models may rely on spurious correlations that often exist between labels and irrelevant features of images, making predictions unreliable when those features do not exist.<n>We propose a technique to generate training samples with text-to-image (T2I) diffusion models for addressing the spurious correlation problem.
arXiv Detail & Related papers (2025-03-21T15:28:22Z) - Noisy Correspondence Learning with Self-Reinforcing Errors Mitigation [63.180725016463974]
Cross-modal retrieval relies on well-matched large-scale datasets that are laborious in practice.
We introduce a novel noisy correspondence learning framework, namely textbfSelf-textbfReinforcing textbfErrors textbfMitigation (SREM)
arXiv Detail & Related papers (2023-12-27T09:03:43Z) - ProBoost: a Boosting Method for Probabilistic Classifiers [55.970609838687864]
ProBoost is a new boosting algorithm for probabilistic classifiers.
It uses the uncertainty of each training sample to determine the most challenging/uncertain ones.
It produces a sequence that progressively focuses on the samples found to have the highest uncertainty.
arXiv Detail & Related papers (2022-09-04T12:49:20Z) - Scalable Personalised Item Ranking through Parametric Density Estimation [53.44830012414444]
Learning from implicit feedback is challenging because of the difficult nature of the one-class problem.
Most conventional methods use a pairwise ranking approach and negative samplers to cope with the one-class problem.
We propose a learning-to-rank approach, which achieves convergence speed comparable to the pointwise counterpart.
arXiv Detail & Related papers (2021-05-11T03:38:16Z) - An Empirical Comparison of Instance Attribution Methods for NLP [62.63504976810927]
We evaluate the degree to which different potential instance attribution agree with respect to the importance of training samples.
We find that simple retrieval methods yield training instances that differ from those identified via gradient-based methods.
arXiv Detail & Related papers (2021-04-09T01:03:17Z) - Good Classifiers are Abundant in the Interpolating Regime [64.72044662855612]
We develop a methodology to compute precisely the full distribution of test errors among interpolating classifiers.
We find that test errors tend to concentrate around a small typical value $varepsilon*$, which deviates substantially from the test error of worst-case interpolating model.
Our results show that the usual style of analysis in statistical learning theory may not be fine-grained enough to capture the good generalization performance observed in practice.
arXiv Detail & Related papers (2020-06-22T21:12:31Z) - Efficient Ensemble Model Generation for Uncertainty Estimation with
Bayesian Approximation in Segmentation [74.06904875527556]
We propose a generic and efficient segmentation framework to construct ensemble segmentation models.
In the proposed method, ensemble models can be efficiently generated by using the layer selection method.
We also devise a new pixel-wise uncertainty loss, which improves the predictive performance.
arXiv Detail & Related papers (2020-05-21T16:08:38Z) - An end-to-end approach for the verification problem: learning the right
distance [15.553424028461885]
We augment the metric learning setting by introducing a parametric pseudo-distance, trained jointly with the encoder.
We first show it approximates a likelihood ratio which can be used for hypothesis tests.
We observe training is much simplified under the proposed approach compared to metric learning with actual distances.
arXiv Detail & Related papers (2020-02-21T18:46:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.