論文の概要: DropoutGS: Dropping Out Gaussians for Better Sparse-view Rendering
- arxiv url: http://arxiv.org/abs/2504.09491v1
- Date: Sun, 13 Apr 2025 09:17:21 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-23 04:53:13.887452
- Title: DropoutGS: Dropping Out Gaussians for Better Sparse-view Rendering
- Title(参考訳): DropoutGS: ガウシアンを落としてスパークビューのレンダリングを改善
- Authors: Yexing Xu, Longguang Wang, Minglin Chen, Sheng Ao, Li Li, Yulan Guo,
- Abstract要約: 3D Gaussian Splatting (3DGS) は新規なビュー合成において有望な結果を示した。
トレーニングビューの数が減少するにつれて、新しいビュー合成タスクは、非常に過小評価された問題に格段に低下する。
オーバーフィッティングを緩和する低複雑さモデルの利点を生かしたランダムドロップアウト正規化(RDR)を提案する。
さらに、これらのモデルに高周波の詳細がないことを補うため、エッジ誘導分割戦略(ESS)を開発した。
- 参考スコア(独自算出の注目度): 45.785618745095164
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Although 3D Gaussian Splatting (3DGS) has demonstrated promising results in novel view synthesis, its performance degrades dramatically with sparse inputs and generates undesirable artifacts. As the number of training views decreases, the novel view synthesis task degrades to a highly under-determined problem such that existing methods suffer from the notorious overfitting issue. Interestingly, we observe that models with fewer Gaussian primitives exhibit less overfitting under sparse inputs. Inspired by this observation, we propose a Random Dropout Regularization (RDR) to exploit the advantages of low-complexity models to alleviate overfitting. In addition, to remedy the lack of high-frequency details for these models, an Edge-guided Splitting Strategy (ESS) is developed. With these two techniques, our method (termed DropoutGS) provides a simple yet effective plug-in approach to improve the generalization performance of existing 3DGS methods. Extensive experiments show that our DropoutGS produces state-of-the-art performance under sparse views on benchmark datasets including Blender, LLFF, and DTU. The project page is at: https://xuyx55.github.io/DropoutGS/.
- Abstract(参考訳): 3D Gaussian Splatting (3DGS)は、新しいビュー合成において有望な結果を示しているが、その性能はスパース入力によって劇的に低下し、望ましくない人工物を生成する。
トレーニングビューの数が減少するにつれて、新しいビュー合成タスクは、既存のメソッドが悪名高い過度なオーバーフィット問題に悩まされるような、非常に過度に決定された問題に格下げされる。
興味深いことに、ガウスプリミティブが少ないモデルは、スパース入力下で過度に適合しない。
この観測から着想を得たRDR(Random Dropout Regularization)を提案する。
さらに、これらのモデルに高周波の詳細が欠如していることを改善するため、エッジ誘導分割戦略(ESS)を開発した。
この2つの手法により,既存の3DGS手法の一般化性能を向上させるため,本手法(DropoutGS と呼ばれる)はシンプルで効果的なプラグイン手法を提供する。
大規模な実験により、DropoutGSはBlender、LLFF、DTUといったベンチマークデータセットのスパースビューの下で、最先端のパフォーマンスを実現しています。
プロジェクトページは https://xuyx55.github.io/DropoutGS/.com/ にある。
関連論文リスト
- DropGaussian: Structural Regularization for Sparse-view Gaussian Splatting [5.216151302783165]
本稿では,DropGaussianと呼ばれる3次元ガウススプラッティングの簡易な変更による事前自由化手法を提案する。
具体的には、トレーニングプロセス中にランダムにガウスをドロップアウトで除去し、非除外ガウスがより大きな勾配を持つようにします。
このような単純な操作は、オーバーフィッティング問題を効果的に軽減し、新規なビュー合成の品質を高める。
論文 参考訳(メタデータ) (2025-04-01T13:23:34Z) - ProtoGS: Efficient and High-Quality Rendering with 3D Gaussian Prototypes [81.48624894781257]
3D Gaussian Splatting (3DGS) は、新しいビュー合成において大きな進歩を遂げてきたが、ガウスプリミティブのかなりの数によって制限されている。
近年の手法では、密度の高いガウスの記憶容量を圧縮することでこの問題に対処しているが、レンダリングの品質と効率の維持には失敗している。
本稿では,ガウスの原始体を表現するためにガウスのプロトタイプを学習するProtoGSを提案し,視覚的品質を犠牲にすることなくガウスの総量を大幅に削減する。
論文 参考訳(メタデータ) (2025-03-21T18:55:14Z) - Taming Video Diffusion Prior with Scene-Grounding Guidance for 3D Gaussian Splatting from Sparse Inputs [28.381287866505637]
本稿では,映像拡散モデルから学習した先行情報を生かした生成パイプラインによる再構成手法を提案する。
最適化された3DGSからのレンダリングシーケンスに基づく新しいシーングラウンドガイダンスを導入し,拡散モデルを用いて一貫したシーケンスを生成する。
提案手法はベースラインを大幅に改善し,挑戦的なベンチマークで最先端のパフォーマンスを実現する。
論文 参考訳(メタデータ) (2025-03-07T01:59:05Z) - See In Detail: Enhancing Sparse-view 3D Gaussian Splatting with Local Depth and Semantic Regularization [14.239772421978373]
3次元ガウス散乱(3DGS)は、新規なビュー合成において顕著な性能を示した。
しかし、そのレンダリング品質は、粗いインフットビューによって劣化し、歪んだコンテンツと細部が減少する。
本稿では,事前情報を取り入れたスパースビュー3DGS法を提案する。
LLFFデータセット上でPSNRを最大0.4dB改善し、最先端の新規ビュー合成手法より優れる。
論文 参考訳(メタデータ) (2025-01-20T14:30:38Z) - Self-Ensembling Gaussian Splatting for Few-Shot Novel View Synthesis [55.561961365113554]
3D Gaussian Splatting (3DGS) は新規ビュー合成(NVS)において顕著な効果を示した
本稿では,Self-Ensembling Gaussian Splatting(SE-GS)を紹介する。
我々は,トレーニング中に不確実性を認識した摂動戦略を導入することで,自己理解を実現する。
LLFF, Mip-NeRF360, DTU, MVImgNetデータセットによる実験結果から, 本手法がNVSの品質を向上させることを示す。
論文 参考訳(メタデータ) (2024-10-31T18:43:48Z) - DOGS: Distributed-Oriented Gaussian Splatting for Large-Scale 3D Reconstruction Via Gaussian Consensus [56.45194233357833]
3DGSを分散訓練するDoGaussianを提案する。
大規模シーンで評価すると,3DGSのトレーニングを6回以上高速化する。
論文 参考訳(メタデータ) (2024-05-22T19:17:58Z) - Bootstrap-GS: Self-Supervised Augmentation for High-Fidelity Gaussian Splatting [9.817215106596146]
3D-GSは、トレーニング中に遭遇したものとは大きく異なる、新しいビューを生成する際に制限に直面します。
この問題に対処するためのブートストラップフレームワークを導入します。
提案手法は,限られたトレーニングセットと整合した新しい視点から,擬似地下真実を合成する。
論文 参考訳(メタデータ) (2024-04-29T12:57:05Z) - AbsGS: Recovering Fine Details for 3D Gaussian Splatting [10.458776364195796]
3D Gaussian Splatting (3D-GS) 技術は3Dプリミティブを相違可能なガウス化と組み合わせて高品質な新規ビュー結果を得る。
しかし、3D-GSは、高頻度の詳細を含む複雑なシーンで過度に再構成の問題に悩まされ、ぼやけた描画画像に繋がる。
本稿では,前述の人工物,すなわち勾配衝突の原因を包括的に分析する。
我々の戦略は過度に再構成された地域のガウス人を効果的に同定し、分割して細部を復元する。
論文 参考訳(メタデータ) (2024-04-16T11:44:12Z) - Spec-Gaussian: Anisotropic View-Dependent Appearance for 3D Gaussian Splatting [55.71424195454963]
Spec-Gaussian は球面調和の代わりに異方性球面ガウス場を利用するアプローチである。
実験結果から,本手法はレンダリング品質の面で既存の手法を超越していることが示された。
この改良は、3D GSの適用性を高めて、特異面と異方面の複雑なシナリオを扱う。
論文 参考訳(メタデータ) (2024-02-24T17:22:15Z) - GaussianPro: 3D Gaussian Splatting with Progressive Propagation [49.918797726059545]
3DGSはStructure-from-Motion (SfM)技術によって生成されるポイントクラウドに大きく依存している。
本稿では, 3次元ガウスの密度化を導くために, プログレッシブ・プログレッシブ・プログレッシブ・ストラテジーを適用した新しい手法を提案する。
提案手法はデータセット上の3DGSを大幅に上回り,PSNRでは1.15dBの改善が見られた。
論文 参考訳(メタデータ) (2024-02-22T16:00:20Z) - GES: Generalized Exponential Splatting for Efficient Radiance Field Rendering [112.16239342037714]
GES(Generalized Exponential Splatting)は、GEF(Generalized Exponential Function)を用いて3Dシーンをモデル化する斬新な表現である。
周波数変調損失の助けを借りて、GESは新規なビュー合成ベンチマークにおいて競合性能を達成する。
論文 参考訳(メタデータ) (2024-02-15T17:32:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。