論文の概要: Mixture-of-RAG: Integrating Text and Tables with Large Language Models
- arxiv url: http://arxiv.org/abs/2504.09554v2
- Date: Mon, 11 Aug 2025 18:03:50 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-13 14:32:16.050813
- Title: Mixture-of-RAG: Integrating Text and Tables with Large Language Models
- Title(参考訳): RAGの混合:大規模言語モデルによるテキストとテーブルの統合
- Authors: Chi Zhang, Qiyang Chen, Mengqi Zhang,
- Abstract要約: 不均一文書RAGは、テキストデータと階層データ間の共同検索と推論を必要とする。
階層構造と異種関係を保存する新しい3段階フレームワークであるMixRAGを提案する。
実験の結果、MixRAGは強いテキストのみ、テーブルのみ、ナイーブミキサーベースラインよりもトップ1検索を46%向上させることがわかった。
- 参考スコア(独自算出の注目度): 5.038576104344948
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large language models (LLMs) achieve optimal utility when their responses are grounded in external knowledge sources. However, real-world documents, such as annual reports, scientific papers, and clinical guidelines, frequently combine extensive narrative content with complex, hierarchically structured tables. While existing retrieval-augmented generation (RAG) systems effectively integrate LLMs' generative capabilities with external retrieval-based information, their performance significantly deteriorates when processing such heterogeneous text-table hierarchies. To address this limitation, we formalize the task of Heterogeneous Document RAG, which requires joint retrieval and reasoning across textual and hierarchical tabular data. We propose MixRAG, a novel three-stage framework: (i) hierarchy row-and-column-level (H-RCL) representation that preserves hierarchical structure and heterogeneous relationships, (ii) an ensemble retriever with LLM-based reranking for evidence alignment, and (iii) multi-step reasoning decomposition via a RECAP prompt strategy. To bridge the gap in available data for this domain, we release a large-scale dataset, DocRAGLib, a 2k-document corpus paired with automatically aligned text-table summaries and gold document annotations. The comprehensive experimental results demonstrate that MixRAG boosts top-1 retrieval by 46% over strong text-only, table-only, and naive-mixture baselines, establishing new state-of-the-art performance for mixed-modality document grounding.
- Abstract(参考訳): 大規模言語モデル (LLM) は, 応答が外部の知識ソースに基礎を置いている場合, 最適なユーティリティを実現する。
しかし、年次報告書、科学論文、臨床ガイドラインなどの現実世界の文書は、広範囲にわたる物語の内容と複雑な階層的な構造化された表をしばしば組み合わせている。
既存の検索拡張生成(RAG)システムは、LLMの生成能力を外部検索ベース情報と効果的に統合するが、そのような異種テキストテーブル階層を処理する場合、その性能は著しく低下する。
この制限に対処するために、テキストと階層的な表データ間の共同検索と推論を必要とする異種文書RAGのタスクを定式化する。
新たな3段階フレームワークであるMixRAGを提案する。
(i)階層構造と異種関係を保存する階層構造列列レベル(H-RCL)表現。
2 LLMをベースとした証拠整理用アンサンブルレトリバー及び
3RECAPプロンプト戦略による多段階推論分解
この領域で利用可能なデータのギャップを埋めるために、我々は大規模なデータセットDocRAGLibをリリースした。
総合的な実験結果から,MixRAGはテキストのみ,テーブルのみ,ナイーブミキシングベースラインよりも46%,トップ1検索を46%向上させ,複合モダリティ文書グラウンドティングのための新たな最先端性能を確立した。
関連論文リスト
- Benchmarking Multimodal Understanding and Complex Reasoning for ESG Tasks [56.350173737493215]
環境・社会・ガバナンス(ESG)報告は、持続可能性の実践の評価、規制コンプライアンスの確保、財務透明性の促進に不可欠である。
MMESGBenchは、マルチモーダル理解と複雑な推論を、構造的に多種多様なマルチソースESG文書間で評価するための、最初のベンチマークデータセットである。
MMESGBenchは、45のESG文書から得られた933の検証済みQAペアで構成され、7つの異なるドキュメントタイプと3つの主要なESGソースカテゴリにまたがる。
論文 参考訳(メタデータ) (2025-07-25T03:58:07Z) - TableRAG: A Retrieval Augmented Generation Framework for Heterogeneous Document Reasoning [3.1480184228320205]
Retrieval-Augmented Generation (RAG) は、オープンドメイン質問応答においてかなりの効果を示した。
既存のRAGアプローチでは、異種文書に適用する場合に限界がある。
本研究では,表データに対するテキスト理解と複雑な操作を統一するフレームワークであるTableRAGを提案する。
また,マルチホップ不均一推論能力を評価するための新しいベンチマークであるHeteQAを開発した。
論文 参考訳(メタデータ) (2025-06-12T06:16:49Z) - Can LLMs Generate Tabular Summaries of Science Papers? Rethinking the Evaluation Protocol [83.90769864167301]
文献レビュー表は、科学論文の集合を要約し比較するために欠かせないものである。
学術論文の収集にあたり,ユーザの情報ニーズを最大限に満たす表を作成するタスクについて検討する。
我々の貢献は、現実世界で遭遇する3つの重要な課題に焦点を当てている: (i)ユーザープロンプトは、しばしば未特定である; (ii)検索された候補論文は、しばしば無関係な内容を含む; (iii)タスク評価は、浅いテキスト類似性技術を超えて進むべきである。
論文 参考訳(メタデータ) (2025-04-14T14:52:28Z) - Generative Retrieval for Book search [106.67655212825025]
書籍検索のための効率的な生成検索フレームワークを提案する。
データ拡張とアウトライン指向の書籍エンコーディングの2つの主要コンポーネントがある。
プロプライエタリなBaiduデータセットの実験では、GBSが強力なベースラインを上回ることが示されている。
論文 参考訳(メタデータ) (2025-01-19T12:57:13Z) - KG-Retriever: Efficient Knowledge Indexing for Retrieval-Augmented Large Language Models [38.93603907879804]
KG-Retrieverと呼ばれる階層的な知識検索機能を備えた新しい知識グラフベースのRAGフレームワークを提案する。
グラフ構造の結合性は、ドキュメント内およびドキュメント間接続性を強化するために完全に活用されている。
近隣の文書からの粗粒度の協調情報と知識グラフからの簡潔な情報により、KG-Retrieverは5つの公開QAデータセットに対して顕著な改善を達成している。
論文 参考訳(メタデータ) (2024-12-07T05:49:14Z) - ConTReGen: Context-driven Tree-structured Retrieval for Open-domain Long-form Text Generation [26.4086456393314]
長い形式のテキスト生成には、幅と深さの両方で複雑なクエリに対処する一貫性のある包括的な応答が必要である。
既存の反復的な検索拡張生成アプローチは、複雑なクエリの各側面を深く掘り下げるのに苦労することが多い。
本稿では,コンテキスト駆動型木構造検索手法を用いた新しいフレームワークであるConTReGenを紹介する。
論文 参考訳(メタデータ) (2024-10-20T21:17:05Z) - DR-RAG: Applying Dynamic Document Relevance to Retrieval-Augmented Generation for Question-Answering [4.364937306005719]
RAGは最近、質問応答(QA)のような知識集約的なタスクにおいて、LLM(Large Language Models)のパフォーマンスを実証した。
重要な文書とクエリの間には関連性が低いものの,文書の一部とクエリを組み合わせることで,残りの文書を検索できることがわかった。
文書検索のリコールと回答の精度を向上させるために,DR-RAG(Dynamic-Relevant Retrieval-Augmented Generation)と呼ばれる2段階検索フレームワークを提案する。
論文 参考訳(メタデータ) (2024-06-11T15:15:33Z) - Multi-Head RAG: Solving Multi-Aspect Problems with LLMs [13.638439488923671]
検索拡張生成(RAG)は大規模言語モデル(LLM)の能力を向上させる
既存のRAGソリューションは、実質的に異なる内容の複数のドキュメントを取得する必要がある可能性のあるクエリに焦点を当てていない。
本稿では,このギャップをシンプルかつ強力なアイデアで解決する新しい手法として,MRAG(Multi-Head RAG)を提案する。
論文 参考訳(メタデータ) (2024-06-07T16:59:38Z) - TACT: Advancing Complex Aggregative Reasoning with Information Extraction Tools [51.576974932743596]
大規模言語モデル(LLM)は、テキスト間の情報の集約を必要とするクエリではよく機能しないことが多い。
TACTには、1つ以上のテキストに散らばる縫合情報を要求する難しい命令が含まれている。
既存のテキストと関連するテーブルのデータセットを活用することで、このデータセットを構築します。
現代のLLMはいずれも,このデータセットでは性能が悪く,精度が38%以下であることが実証された。
論文 参考訳(メタデータ) (2024-06-05T20:32:56Z) - Adaptive-RAG: Learning to Adapt Retrieval-Augmented Large Language Models through Question Complexity [59.57065228857247]
Retrieval-augmented Large Language Models (LLMs) は、質問回答(QA)のようなタスクにおける応答精度を高めるための有望なアプローチとして登場した。
本稿では,クエリの複雑さに基づいて,LLMの最適戦略を動的に選択できる適応型QAフレームワークを提案する。
オープンドメインのQAデータセットを用いて、複数のクエリの複雑さを網羅し、QAシステムの全体的な効率性と精度を高めることを示す。
論文 参考訳(メタデータ) (2024-03-21T13:52:30Z) - Beyond Extraction: Contextualising Tabular Data for Efficient
Summarisation by Language Models [0.0]
Retrieval-Augmented Generation アーキテクチャの従来の利用は、様々な文書から情報を取得するのに有効であることが証明されている。
本研究では,RAGに基づくシステムにおいて,複雑なテーブルクエリの精度を高めるための革新的なアプローチを提案する。
論文 参考訳(メタデータ) (2024-01-04T16:16:14Z) - Decomposing Complex Queries for Tip-of-the-tongue Retrieval [72.07449449115167]
複雑なクエリは、コンテンツ要素(例えば、書籍の文字やイベント)、ドキュメントテキスト以外の情報を記述する。
この検索設定は舌の先端 (TOT) と呼ばれ、クエリと文書テキスト間の語彙的および意味的重複に依存するモデルでは特に困難である。
クエリを個別のヒントに分解し、サブクエリとしてルーティングし、特定の検索者にルーティングし、結果をアンサンブルすることで、このような複雑なクエリを扱うための、シンプルで効果的なフレームワークを導入します。
論文 参考訳(メタデータ) (2023-05-24T11:43:40Z) - Mixed-modality Representation Learning and Pre-training for Joint
Table-and-Text Retrieval in OpenQA [85.17249272519626]
最適化された OpenQA Table-Text Retriever (OTTeR) を提案する。
検索中心の混合モード合成事前学習を行う。
OTTeRはOTT-QAデータセット上でのテーブル・アンド・テキスト検索の性能を大幅に改善する。
論文 参考訳(メタデータ) (2022-10-11T07:04:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。