論文の概要: KG-Retriever: Efficient Knowledge Indexing for Retrieval-Augmented Large Language Models
- arxiv url: http://arxiv.org/abs/2412.05547v1
- Date: Sat, 07 Dec 2024 05:49:14 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-10 14:56:15.640027
- Title: KG-Retriever: Efficient Knowledge Indexing for Retrieval-Augmented Large Language Models
- Title(参考訳): KG-Retriever:Retrieval-Augmented Large Language Modelのための効率的な知識インデックス作成
- Authors: Weijie Chen, Ting Bai, Jinbo Su, Jian Luan, Wei Liu, Chuan Shi,
- Abstract要約: KG-Retrieverと呼ばれる階層的な知識検索機能を備えた新しい知識グラフベースのRAGフレームワークを提案する。
グラフ構造の結合性は、ドキュメント内およびドキュメント間接続性を強化するために完全に活用されている。
近隣の文書からの粗粒度の協調情報と知識グラフからの簡潔な情報により、KG-Retrieverは5つの公開QAデータセットに対して顕著な改善を達成している。
- 参考スコア(独自算出の注目度): 38.93603907879804
- License:
- Abstract: Large language models with retrieval-augmented generation encounter a pivotal challenge in intricate retrieval tasks, e.g., multi-hop question answering, which requires the model to navigate across multiple documents and generate comprehensive responses based on fragmented information. To tackle this challenge, we introduce a novel Knowledge Graph-based RAG framework with a hierarchical knowledge retriever, termed KG-Retriever. The retrieval indexing in KG-Retriever is constructed on a hierarchical index graph that consists of a knowledge graph layer and a collaborative document layer. The associative nature of graph structures is fully utilized to strengthen intra-document and inter-document connectivity, thereby fundamentally alleviating the information fragmentation problem and meanwhile improving the retrieval efficiency in cross-document retrieval of LLMs. With the coarse-grained collaborative information from neighboring documents and concise information from the knowledge graph, KG-Retriever achieves marked improvements on five public QA datasets, showing the effectiveness and efficiency of our proposed RAG framework.
- Abstract(参考訳): 検索強化世代を持つ大規模言語モデルは、複雑な検索タスク、例えばマルチホップ質問応答において重要な課題に直面し、複数のドキュメントをナビゲートし、断片化された情報に基づいて包括的な応答を生成する必要がある。
この課題に対処するために,KG-Retrieverと呼ばれる階層的な知識検索機能を備えた新しい知識グラフベースのRAGフレームワークを提案する。
KG-Retrieverにおける検索インデックスは、知識グラフ層と協調文書層からなる階層的なインデックスグラフ上に構築される。
グラフ構造の連想性は完全に活用され,文書内および文書間接続性を強化し,情報断片化問題を根本的に緩和するとともに,LCMのクロスドキュメント検索における検索効率を向上する。
KG-Retrieverは、近隣の文書からの粗粒度の協調情報と知識グラフからの簡潔な情報により、5つの公開QAデータセットに対する顕著な改善を実現し、提案したRAGフレームワークの有効性と効率を示す。
関連論文リスト
- G-RAG: Knowledge Expansion in Material Science [0.0]
Graph RAGはグラフデータベースを統合して、検索プロセスを強化する。
文書のより詳細な表現を実現するために,エージェントベースの解析手法を実装した。
論文 参考訳(メタデータ) (2024-11-21T21:22:58Z) - Knowledge-Aware Query Expansion with Large Language Models for Textual and Relational Retrieval [49.42043077545341]
知識グラフ(KG)から構造化文書関係を付加したLLMを拡張した知識対応クエリ拡張フレームワークを提案する。
文書テキストをリッチなKGノード表現として活用し、KAR(Knowledge-Aware Retrieval)のための文書ベースの関係フィルタリングを利用する。
論文 参考訳(メタデータ) (2024-10-17T17:03:23Z) - Retriever-and-Memory: Towards Adaptive Note-Enhanced Retrieval-Augmented Generation [72.70046559930555]
本稿では,複雑なQAタスクに対する適応ノート拡張RAG(Adaptive Note-Enhanced RAG)と呼ばれる汎用RAGアプローチを提案する。
具体的には、Adaptive-Noteは、知識の成長に関する包括的な視点を導入し、ノート形式で新しい情報を反復的に収集する。
さらに,適切な知識探索を促進するために,適応的な音符ベースの停止探索戦略を用いて,「何を検索し,いつ停止するか」を判断する。
論文 参考訳(メタデータ) (2024-10-11T14:03:29Z) - Leveraging Large Language Models for Semantic Query Processing in a Scholarly Knowledge Graph [1.7418328181959968]
本研究は,革新的なセマンティッククエリ処理システムを開発することを目的としている。
オーストラリア国立大学のコンピュータサイエンス(CS)研究者による研究成果に関する総合的な情報を得ることができる。
論文 参考訳(メタデータ) (2024-05-24T09:19:45Z) - KG-RAG: Bridging the Gap Between Knowledge and Creativity [0.0]
大規模言語モデルエージェント(LMA)は、情報幻覚、破滅的な忘れ込み、長いコンテキストの処理における制限といった問題に直面している。
本稿では,LMAの知識能力を高めるため,KG-RAG (Knowledge Graph-Retrieval Augmented Generation)パイプラインを提案する。
ComplexWebQuestionsデータセットに関する予備実験では、幻覚的コンテンツの削減において顕著な改善が示されている。
論文 参考訳(メタデータ) (2024-05-20T14:03:05Z) - Decomposing Complex Queries for Tip-of-the-tongue Retrieval [72.07449449115167]
複雑なクエリは、コンテンツ要素(例えば、書籍の文字やイベント)、ドキュメントテキスト以外の情報を記述する。
この検索設定は舌の先端 (TOT) と呼ばれ、クエリと文書テキスト間の語彙的および意味的重複に依存するモデルでは特に困難である。
クエリを個別のヒントに分解し、サブクエリとしてルーティングし、特定の検索者にルーティングし、結果をアンサンブルすることで、このような複雑なクエリを扱うための、シンプルで効果的なフレームワークを導入します。
論文 参考訳(メタデータ) (2023-05-24T11:43:40Z) - UniKGQA: Unified Retrieval and Reasoning for Solving Multi-hop Question
Answering Over Knowledge Graph [89.98762327725112]
KGQA(Multi-hop Question Answering over Knowledge Graph)は、自然言語の質問で言及されているトピックエンティティから、複数のホップを持つ回答エンティティを見つけることを目的としている。
我々は、モデルアーキテクチャとパラメータ学習の両方において、検索と推論を統合することで、マルチホップKGQAタスクの新しいアプローチであるUniKGQAを提案する。
論文 参考訳(メタデータ) (2022-12-02T04:08:09Z) - Query-Specific Knowledge Graphs for Complex Finance Topics [6.599344783327053]
ドメインの専門家が挑戦的な質問を作成できるCODECデータセットに重点を置いています。
最先端のランキングシステムには改善の余地があることが示される。
実体と文書の関連性は正の相関関係にあることを示す。
論文 参考訳(メタデータ) (2022-11-08T10:21:13Z) - Mind the Gap: Cross-Lingual Information Retrieval with Hierarchical
Knowledge Enhancement [28.99870384344861]
Cross-Lingual Information Retrievalは、ユーザのクエリとは異なる言語で書かれたドキュメントをランク付けすることを目的としている。
マルチ言語知識グラフ(KG)をCLIRタスクに導入する。
本稿では,階層的知識向上(HIKE)を用いたCLIRというモデルを提案する。
論文 参考訳(メタデータ) (2021-12-27T04:56:30Z) - ENT-DESC: Entity Description Generation by Exploring Knowledge Graph [53.03778194567752]
実際には、出力記述が最も重要な知識のみをカバーするため、入力知識は十分以上である可能性がある。
我々は、KG-to-textにおけるこのような実践的なシナリオの研究を容易にするために、大規模で挑戦的なデータセットを導入する。
本稿では,元のグラフ情報をより包括的に表現できるマルチグラフ構造を提案する。
論文 参考訳(メタデータ) (2020-04-30T14:16:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。