論文の概要: Outage Probability Analysis for OTFS with Finite Blocklength
- arxiv url: http://arxiv.org/abs/2504.09628v1
- Date: Sun, 13 Apr 2025 15:53:46 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-15 16:48:39.570682
- Title: Outage Probability Analysis for OTFS with Finite Blocklength
- Title(参考訳): 有限ブロック長OTFSの故障確率解析
- Authors: Xin Zhang, Wensheng Lin, Lixin Li, Zhu Han, Tad Matsumoto,
- Abstract要約: 本稿では,OTFS変調の停止確率を有限ブロック長で解析する。
解答パス数と符号化レートが停止確率に与える影響を解析した。
- 参考スコア(独自算出の注目度): 24.29964489779442
- License:
- Abstract: Orthogonal time frequency space (OTFS) modulation is widely acknowledged as a prospective waveform for future wireless communication networks.To provide insights for the practical system design, this paper analyzes the outage probability of OTFS modulation with finite blocklength.To begin with, we present the system model and formulate the analysis of outage probability for OTFS with finite blocklength as an equivalent problem of calculating the outage probability with finite blocklength over parallel additive white Gaussian noise (AWGN) channels.Subsequently, we apply the equivalent noise approach to derive a lower bound on the outage probability of OTFS with finite blocklength under both average power allocation and water-filling power allocation strategies, respectively.Finally, the lower bounds of the outage probability are determined using the Monte-Carlo method for the two power allocation strategies.The impact of the number of resolvable paths and coding rates on the outage probability is analyzed, and the simulation results are compared with the theoretical lower bounds.
- Abstract(参考訳): 本稿では,OTFS の停止確率を有限ブロック長で解析し,並列付加型白色ガウス雑音(AWGN) チャネル上で有限ブロック長で計算する等価問題として,OTFS の停止確率を有限ブロック長で解析するシステムモデルについて述べる。その後,OTFS の停止確率を平均パワーアロケーションと給水パワーアロケーション戦略の両方で有限ブロック長で導出する等価ノイズアプローチを適用し,モンテカルロの停止確率の低い境界値をモンテカルロ法で決定する。
関連論文リスト
- Diffusion Model Based Resource Allocation Strategy in Ultra-Reliable Wireless Networked Control Systems [10.177917426690701]
拡散モデルは、複雑なデータ分散をキャプチャするその能力を活用することによって、生成AIで大いに利用されている。
本稿では,無線ネットワーク制御システムのための新しい拡散モデルに基づく資源配分手法を提案する。
提案手法は,従来提案されていたDeep Reinforcement Learning (DRL) ベースの手法よりも高い性能を示し,全消費電力に関する最適性能を示した。
論文 参考訳(メタデータ) (2024-07-22T16:44:57Z) - Convergence of Continuous Normalizing Flows for Learning Probability Distributions [10.381321024264484]
連続正規化フロー (Continuous normalizing flow, CNFs) は確率分布を学習するための生成法である。
有限ランダムサンプルからの学習確率分布における線形正則性を持つCNFの理論的性質について検討する。
本稿では,速度推定,離散化誤差,早期停止誤差による誤差を包含する収束解析フレームワークを提案する。
論文 参考訳(メタデータ) (2024-03-31T03:39:04Z) - Rethinking Clustered Federated Learning in NOMA Enhanced Wireless
Networks [60.09912912343705]
本研究では,新しいクラスタ化フェデレーション学習(CFL)アプローチと,非独立かつ同一に分散した(非IID)データセットを統合することのメリットについて検討する。
データ分布における非IIDの度合いを測定する一般化ギャップの詳細な理論的解析について述べる。
非IID条件によって引き起こされる課題に対処する解決策は、特性の分析によって提案される。
論文 参考訳(メタデータ) (2024-03-05T17:49:09Z) - Robust Control for Dynamical Systems With Non-Gaussian Noise via Formal
Abstractions [59.605246463200736]
雑音分布の明示的な表現に依存しない新しい制御器合成法を提案する。
まず、連続制御系を有限状態モデルに抽象化し、離散状態間の確率的遷移によってノイズを捕捉する。
我々は最先端の検証技術を用いてマルコフ決定プロセスの間隔を保証し、これらの保証が元の制御システムに受け継がれるコントローラを演算する。
論文 参考訳(メタデータ) (2023-01-04T10:40:30Z) - Deep Learning-Based Synchronization for Uplink NB-IoT [72.86843435313048]
狭帯域モノのインターネット(NB-IoT)における狭帯域物理ランダムアクセスチャネル(NPRACH)のデバイス検出と到着時刻推定のためのニューラルネットワーク(NN)に基づくアルゴリズムを提案する。
導入されたNNアーキテクチャは、残余の畳み込みネットワークと、5Gニューラジオ(5G NR)仕様のプリアンブル構造に関する知識を利用する。
論文 参考訳(メタデータ) (2022-05-22T12:16:43Z) - Probabilistic electric load forecasting through Bayesian Mixture Density
Networks [70.50488907591463]
確率的負荷予測(PLF)は、スマートエネルギーグリッドの効率的な管理に必要な拡張ツールチェーンの重要なコンポーネントです。
ベイジアン混合密度ネットワークを枠とした新しいPLFアプローチを提案する。
後方分布の信頼性と計算にスケーラブルな推定を行うため,平均場変動推定と深層アンサンブルを統合した。
論文 参考訳(メタデータ) (2020-12-23T16:21:34Z) - Amortized Conditional Normalized Maximum Likelihood: Reliable Out of
Distribution Uncertainty Estimation [99.92568326314667]
本研究では,不確実性推定のための拡張性のある汎用的アプローチとして,償却条件正規化最大値(ACNML)法を提案する。
提案アルゴリズムは条件付き正規化最大度(CNML)符号化方式に基づいており、最小記述長の原理に従って最小値の最適特性を持つ。
我々は、ACNMLが、分布外入力のキャリブレーションの観点から、不確実性推定のための多くの手法と好意的に比較することを示した。
論文 参考訳(メタデータ) (2020-11-05T08:04:34Z) - Closed-loop Parameter Identification of Linear Dynamical Systems through
the Lens of Feedback Channel Coding Theory [0.0]
本稿では,ガウス過程雑音を伴う線形スカラー系の閉ループ同定の問題について考察する。
学習速度は,対応するAWGNチャネルの容量によって基本的に上界にあることを示す。
フィードバックポリシの最適設計は依然として難しいが、上限が達成される条件を導出する。
論文 参考訳(メタデータ) (2020-03-27T17:30:10Z) - Learning Likelihoods with Conditional Normalizing Flows [54.60456010771409]
条件正規化フロー(CNF)はサンプリングと推論において効率的である。
出力空間写像に対する基底密度が入力 x 上で条件づけられた CNF について、条件密度 p(y|x) をモデル化する。
論文 参考訳(メタデータ) (2019-11-29T19:17:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。