論文の概要: HDC: Hierarchical Distillation for Multi-level Noisy Consistency in Semi-Supervised Fetal Ultrasound Segmentation
- arxiv url: http://arxiv.org/abs/2504.09876v1
- Date: Mon, 14 Apr 2025 04:52:24 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-15 16:54:53.100502
- Title: HDC: Hierarchical Distillation for Multi-level Noisy Consistency in Semi-Supervised Fetal Ultrasound Segmentation
- Title(参考訳): 半監督下胎児超音波切離における多レベルノイズ一貫性のための階層的蒸留法
- Authors: Tran Quoc Khanh Le, Nguyen Lan Vi Vu, Ha-Hieu Pham, Xuan-Loc Huynh, Tien-Huy Nguyen, Minh Huu Nhat Le, Quan Nguyen, Hien D. Nguyen,
- Abstract要約: HDCは、階層的蒸留と一貫性学習を統合した、新しい半教師付きセグメンテーションフレームワークである。
提案手法は,既存のマルチ教師モデルよりも計算オーバーヘッドが大幅に低い競合性能を実現する。
- 参考スコア(独自算出の注目度): 2.964206587462833
- License:
- Abstract: Transvaginal ultrasound is a critical imaging modality for evaluating cervical anatomy and detecting physiological changes. However, accurate segmentation of cervical structures remains challenging due to low contrast, shadow artifacts, and fuzzy boundaries. While convolutional neural networks (CNNs) have shown promising results in medical image segmentation, their performance is often limited by the need for large-scale annotated datasets - an impractical requirement in clinical ultrasound imaging. Semi-supervised learning (SSL) offers a compelling solution by leveraging unlabeled data, but existing teacher-student frameworks often suffer from confirmation bias and high computational costs. We propose HDC, a novel semi-supervised segmentation framework that integrates Hierarchical Distillation and Consistency learning within a multi-level noise mean-teacher framework. Unlike conventional approaches that rely solely on pseudo-labeling, we introduce a hierarchical distillation mechanism that guides feature-level learning via two novel objectives: (1) Correlation Guidance Loss to align feature representations between the teacher and main student branch, and (2) Mutual Information Loss to stabilize representations between the main and noisy student branches. Our framework reduces model complexity while improving generalization. Extensive experiments on two fetal ultrasound datasets, FUGC and PSFH, demonstrate that our method achieves competitive performance with significantly lower computational overhead than existing multi-teacher models.
- Abstract(参考訳): 経迷走神経超音波は頚椎の解剖学的評価と生理的変化の検出において重要な画像モダリティである。
しかし、低コントラスト、影のアーティファクト、ファジィ境界のために、正確な頚部構造のセグメンテーションは依然として困難である。
畳み込みニューラルネットワーク(CNN)は、医療画像のセグメンテーションにおいて有望な結果を示しているが、そのパフォーマンスは、大規模な注釈付きデータセットの必要性によって制限されることが多い。
半教師付き学習(SSL)は、ラベルのないデータを活用することで魅力的なソリューションを提供するが、既存の教師による学習フレームワークは、しばしば確認バイアスと高い計算コストに悩まされる。
階層的蒸留と一貫性学習を多段階雑音平均学習フレームワークに統合した,新しい半教師付きセグメンテーションフレームワーク HDC を提案する。
擬似ラベルのみに依存した従来の手法とは違って,(1)教師と主学派の間で特徴表現を整合させる相関誘導損失,(2)主学派と騒音学派の表現を安定させる相互情報損失の2つの新しい目的を通じて特徴レベル学習を誘導する階層的蒸留機構を導入する。
我々のフレームワークは一般化を改善しながらモデルの複雑さを減らします。
FUGC と PSFH の2つの胎児超音波データセットに対する大規模な実験により,本手法は既存のマルチ教師モデルよりも計算オーバーヘッドが大幅に低い競争性能を達成できることを示した。
関連論文リスト
- Intrapartum Ultrasound Image Segmentation of Pubic Symphysis and Fetal Head Using Dual Student-Teacher Framework with CNN-ViT Collaborative Learning [1.5233179662962222]
pubic symphysis and fetal head (PSFH) の分節は、労働の進行をモニターし、潜在的に引き起こされる合併症を特定するための重要なステップである。
従来の半教師付き学習アプローチは、主に畳み込みニューラルネットワーク(CNN)に基づく統合ネットワークモデルを利用する。
CNN と Transformer を組み合わせた新しいフレームワークである Dual-Student and Teacher Combining CNN (DSTCT) を導入する。
論文 参考訳(メタデータ) (2024-09-11T00:57:31Z) - PMT: Progressive Mean Teacher via Exploring Temporal Consistency for Semi-Supervised Medical Image Segmentation [51.509573838103854]
医用画像セグメンテーションのための半教師付き学習フレームワークであるプログレッシブ平均教師(PMT)を提案する。
我々のPMTは、トレーニングプロセスにおいて、堅牢で多様な特徴を学習することで、高忠実な擬似ラベルを生成する。
CT と MRI の異なる2つのデータセットに対する実験結果から,本手法が最先端の医用画像分割法より優れていることが示された。
論文 参考訳(メタデータ) (2024-09-08T15:02:25Z) - Deep Spectral Methods for Unsupervised Ultrasound Image Interpretation [53.37499744840018]
本稿では, 超音波を応用した非教師型深層学習手法を提案する。
我々は、スペクトルグラフ理論と深層学習法を組み合わせた教師なしディープスペクトル法から重要な概念を統合する。
スペクトルクラスタリングの自己教師型トランスフォーマー機能を利用して、超音波特有のメトリクスと形状と位置の先行値に基づいて意味のあるセグメントを生成し、データセット間のセマンティック一貫性を確保する。
論文 参考訳(メタデータ) (2024-08-04T14:30:14Z) - Ultrasound Nodule Segmentation Using Asymmetric Learning with Simple Clinical Annotation [25.459627476201646]
自動結節分割法における超音波診断から直接, 簡単なアスペクト比アノテーションを用いることを提案する。
アスペクト比アノテーションを2種類の擬似ラベルで拡張することにより、非対称学習フレームワークを開発する。
臨床的に収集した2つの超音波データセット(甲状腺と乳房)を用いた実験により,提案手法の優れた性能が示された。
論文 参考訳(メタデータ) (2024-04-23T09:07:04Z) - Multi-Scale Cross Contrastive Learning for Semi-Supervised Medical Image
Segmentation [14.536384387956527]
医用画像の構造を分割するマルチスケールクロススーパービジョンコントラスト学習フレームワークを開発した。
提案手法は,頑健な特徴表現を抽出するために,地上構造と横断予測ラベルに基づくマルチスケール特徴と対比する。
Diceでは最先端の半教師あり手法を3.0%以上上回っている。
論文 参考訳(メタデータ) (2023-06-25T16:55:32Z) - Cross-supervised Dual Classifiers for Semi-supervised Medical Image
Segmentation [10.18427897663732]
半教師付き医用画像分割は、大規模医用画像解析に有望な解決策を提供する。
本稿では、二重分類器(DC-Net)に基づくクロス教師あり学習フレームワークを提案する。
LAとPancreas-CTデータセットの実験は、DC-Netが半教師付きセグメンテーションの他の最先端手法よりも優れていることを示している。
論文 参考訳(メタデータ) (2023-05-25T16:23:39Z) - Reliable Joint Segmentation of Retinal Edema Lesions in OCT Images [55.83984261827332]
本稿では,信頼性の高いマルチスケールウェーブレットエンハンストランスネットワークを提案する。
本研究では,ウェーブレット型特徴抽出器ネットワークとマルチスケール変圧器モジュールを統合したセグメンテーションバックボーンを開発した。
提案手法は,他の最先端セグメンテーション手法と比較して信頼性の高いセグメンテーション精度を実現する。
論文 参考訳(メタデータ) (2022-12-01T07:32:56Z) - Learning Discriminative Representation via Metric Learning for
Imbalanced Medical Image Classification [52.94051907952536]
本稿では,特徴抽出器がより識別的な特徴表現を抽出するのを助けるために,2段階フレームワークの第1段階にメトリック学習を組み込むことを提案する。
主に3つの医用画像データセットを用いて実験したところ、提案手法は既存の1段階と2段階のアプローチより一貫して優れていた。
論文 参考訳(メタデータ) (2022-07-14T14:57:01Z) - Mixed-UNet: Refined Class Activation Mapping for Weakly-Supervised
Semantic Segmentation with Multi-scale Inference [28.409679398886304]
我々は、デコードフェーズに2つの並列分岐を持つMixed-UNetという新しいモデルを開発する。
地域病院や公開データセットから収集したデータセットに対して,いくつかの一般的なディープラーニングに基づくセグメンテーションアプローチに対して,設計したMixed-UNetを評価した。
論文 参考訳(メタデータ) (2022-05-06T08:37:02Z) - Towards Robust Partially Supervised Multi-Structure Medical Image
Segmentation on Small-Scale Data [123.03252888189546]
データ不足下における部分教師付き学習(PSL)における方法論的ギャップを埋めるために,不確実性下でのビシナルラベル(VLUU)を提案する。
マルチタスク学習とヴィジナルリスク最小化によって動機づけられたVLUUは、ビジナルラベルを生成することによって、部分的に教師付き問題を完全な教師付き問題に変換する。
本研究は,ラベル効率の高い深層学習における新たな研究の方向性を示唆するものである。
論文 参考訳(メタデータ) (2020-11-28T16:31:00Z) - A Teacher-Student Framework for Semi-supervised Medical Image
Segmentation From Mixed Supervision [62.4773770041279]
そこで我々は,臓器と病変のセグメンテーションのための教師と学生のスタイルに基づくセミ教師付き学習フレームワークを開発した。
我々は,本モデルがバウンディングボックスの品質に対して堅牢であることを示し,フル教師付き学習手法と比較した性能を実現する。
論文 参考訳(メタデータ) (2020-10-23T07:58:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。