論文の概要: MMKB-RAG: A Multi-Modal Knowledge-Based Retrieval-Augmented Generation Framework
- arxiv url: http://arxiv.org/abs/2504.10074v1
- Date: Mon, 14 Apr 2025 10:19:47 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-15 16:52:35.804712
- Title: MMKB-RAG: A Multi-Modal Knowledge-Based Retrieval-Augmented Generation Framework
- Title(参考訳): MMKB-RAG:マルチモーダルな知識に基づく検索型生成フレームワーク
- Authors: Zihan Ling, Zhiyao Guo, Yixuan Huang, Yi An, Shuai Xiao, Jinsong Lan, Xiaoyong Zhu, Bo Zheng,
- Abstract要約: MMKB-RAG(Multi-Modal Knowledge-based Retrieval-Augmented Generation)を提案する。
このフレームワークは、モデル固有の知識境界を利用して、検索プロセスのセマンティックタグを動的に生成する。
知識に基づく視覚的質問応答タスクの実験は、我々のアプローチの有効性を実証する。
- 参考スコア(独自算出の注目度): 15.410873298893817
- License:
- Abstract: Recent advancements in large language models (LLMs) and multi-modal LLMs have been remarkable. However, these models still rely solely on their parametric knowledge, which limits their ability to generate up-to-date information and increases the risk of producing erroneous content. Retrieval-Augmented Generation (RAG) partially mitigates these challenges by incorporating external data sources, yet the reliance on databases and retrieval systems can introduce irrelevant or inaccurate documents, ultimately undermining both performance and reasoning quality. In this paper, we propose Multi-Modal Knowledge-Based Retrieval-Augmented Generation (MMKB-RAG), a novel multi-modal RAG framework that leverages the inherent knowledge boundaries of models to dynamically generate semantic tags for the retrieval process. This strategy enables the joint filtering of retrieved documents, retaining only the most relevant and accurate references. Extensive experiments on knowledge-based visual question-answering tasks demonstrate the efficacy of our approach: on the E-VQA dataset, our method improves performance by +4.2\% on the Single-Hop subset and +0.4\% on the full dataset, while on the InfoSeek dataset, it achieves gains of +7.8\% on the Unseen-Q subset, +8.2\% on the Unseen-E subset, and +8.1\% on the full dataset. These results highlight significant enhancements in both accuracy and robustness over the current state-of-the-art MLLM and RAG frameworks.
- Abstract(参考訳): 大規模言語モデル(LLM)やマルチモーダルLLMの進歩は目覚ましい。
しかし、これらのモデルはまだパラメトリック知識のみに依存しており、最新の情報を生成する能力が制限され、誤ったコンテンツを生成するリスクが増大する。
Retrieval-Augmented Generation (RAG) は、外部データソースを組み込むことによって、これらの課題を部分的に軽減するが、データベースや検索システムへの依存は、無関係または不正確なドキュメントを導入でき、最終的にはパフォーマンスと推論品質の両方を損なう。
本稿では、モデル固有の知識境界を利用して、検索プロセスのセマンティックタグを動的に生成する新しいマルチモーダルRAGフレームワークであるMMKB-RAGを提案する。
この戦略は、検索した文書の結合フィルタリングを可能にし、最も関連性が高く正確な参照のみを保持する。
E-VQAデータセットでは、Single-Hopサブセットで+4.2\%、フルデータセットで+0.4\%、InfoSeekデータセットでは、Unseen-Qサブセットで+7.8\%、Unseen-Eサブセットで+8.2\%、フルデータセットで+8.1\%である。
これらの結果は、現在の最先端MLLMおよびRAGフレームワークよりも精度と堅牢性の両方が大幅に向上したことを示している。
関連論文リスト
- REAL-MM-RAG: A Real-World Multi-Modal Retrieval Benchmark [16.55516587540082]
本稿では,リアルタイム検索に不可欠な4つの重要な特性に対処する自動生成ベンチマークREAL-MM-RAGを紹介する。
本稿では,キーワードマッチング以外のモデルのセマンティック理解を評価するために,クエリリフレッシングに基づく多言語レベルのスキームを提案する。
我々のベンチマークでは、特にテーブル重ドキュメントの扱いや、クエリ・リフレージングに対する堅牢性において、重要なモデルの弱点が明らかになっている。
論文 参考訳(メタデータ) (2025-02-17T22:10:47Z) - QuIM-RAG: Advancing Retrieval-Augmented Generation with Inverted Question Matching for Enhanced QA Performance [1.433758865948252]
本研究では,RAG(Retrieval-Augmented Generation)システム構築のための新しいアーキテクチャを提案する。
RAGアーキテクチャは、ターゲット文書から応答を生成するために構築される。
本稿では,本システムにおける検索機構の新しいアプローチQuIM-RAGを紹介する。
論文 参考訳(メタデータ) (2025-01-06T01:07:59Z) - MAmmoTH-VL: Eliciting Multimodal Reasoning with Instruction Tuning at Scale [66.73529246309033]
MLLM(Multimodal large language model)は、多モーダルタスクにおいて大きな可能性を秘めている。
既存の命令チューニングデータセットは、中間的合理性のないフレーズレベルの答えのみを提供する。
そこで本研究では,大規模マルチモーダル・インストラクション・チューニング・データセットを構築するためのスケーラブルで費用対効果の高い手法を提案する。
論文 参考訳(メタデータ) (2024-12-06T18:14:24Z) - mR$^2$AG: Multimodal Retrieval-Reflection-Augmented Generation for Knowledge-Based VQA [78.45521005703958]
マルチモーダル検索拡張生成(mRAG)はMLLMに包括的で最新の知識を提供するために自然に導入されている。
我々は、適応的検索と有用な情報ローカライゼーションを実現する textbfRetrieval-textbfReftextbfAugmented textbfGeneration (mR$2$AG) という新しいフレームワークを提案する。
mR$2$AG は INFOSEEK と Encyclopedic-VQA の最先端MLLM を著しく上回る
論文 参考訳(メタデータ) (2024-11-22T16:15:50Z) - Star-Agents: Automatic Data Optimization with LLM Agents for Instruction Tuning [71.2981957820888]
本稿では,データセット間のデータ品質向上を自動化する新しいStar-Agentsフレームワークを提案する。
このフレームワークは最初,複数のLDMエージェントを用いた多様なインストラクションデータを生成する。
生成したデータは、難易度と品質の両方を評価する二重モデル法を用いて厳密な評価を行う。
論文 参考訳(メタデータ) (2024-11-21T02:30:53Z) - Fact, Fetch, and Reason: A Unified Evaluation of Retrieval-Augmented Generation [19.312330150540912]
新たなアプリケーションは、Large Language Models(LLMs)を使用して、検索強化世代(RAG)機能を強化している。
FRAMESは,LLMが現実的な応答を提供する能力をテストするために設計された高品質な評価データセットである。
本稿では,最先端のLLMでもこの課題に対処し,0.40の精度で検索を行なわないことを示す。
論文 参考訳(メタデータ) (2024-09-19T17:52:07Z) - Meta Knowledge for Retrieval Augmented Large Language Models [0.0]
大規模言語モデル(LLM)のための新しいデータ中心型RAGワークフローを提案する。
提案手法は,各文書にメタデータと合成質問文(QA)を生成することに依存する。
合成質問マッチングによる拡張クエリの使用は、従来のRAGパイプラインよりも大幅に優れていることを示す。
論文 参考訳(メタデータ) (2024-08-16T20:55:21Z) - DiscoveryBench: Towards Data-Driven Discovery with Large Language Models [50.36636396660163]
我々は、データ駆動探索の多段階プロセスを形式化する最初の包括的なベンチマークであるDiscoveryBenchを紹介する。
我々のベンチマークには、社会学や工学などの6つの分野にまたがる264のタスクが含まれている。
私たちのベンチマークでは、自律的なデータ駆動型発見の課題を説明し、コミュニティが前進するための貴重なリソースとして役立ちます。
論文 参考訳(メタデータ) (2024-07-01T18:58:22Z) - AvaTaR: Optimizing LLM Agents for Tool Usage via Contrastive Reasoning [93.96463520716759]
大規模言語モデル(LLM)エージェントは、精度と幻覚を高めるために外部ツールと知識を活用する際、印象的な能力を示した。
本稿では、LLMエージェントを最適化して提供されたツールを効果的に活用し、与えられたタスクのパフォーマンスを向上させる新しい自動化フレームワークであるAvaTaRを紹介する。
論文 参考訳(メタデータ) (2024-06-17T04:20:02Z) - Data Augmentation for Abstractive Query-Focused Multi-Document
Summarization [129.96147867496205]
2つのQMDSトレーニングデータセットを提示し,2つのデータ拡張手法を用いて構築する。
これらの2つのデータセットは相補的な性質を持ち、すなわちQMDSCNNは実際のサマリを持つが、クエリはシミュレートされる。
組み合わせたデータセット上にエンドツーエンドのニューラルネットワークモデルを構築し、DUCデータセットに最新の転送結果をもたらします。
論文 参考訳(メタデータ) (2021-03-02T16:57:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。