論文の概要: Vision based driving agent for race car simulation environments
- arxiv url: http://arxiv.org/abs/2504.10266v1
- Date: Mon, 14 Apr 2025 14:29:37 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-15 16:53:33.492531
- Title: Vision based driving agent for race car simulation environments
- Title(参考訳): レースカーシミュレーション環境のための視覚ベース駆動エージェント
- Authors: Gergely Bári, László Palkovics,
- Abstract要約: 本稿では, レーストラック上での時間最適運転の課題を, 深層強化学習問題として定式化した。
その結果,最大タイヤグリップ電位を利用した人間的な学習と運転行動が示された。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: In recent years, autonomous driving has become a popular field of study. As control at tire grip limit is essential during emergency situations, algorithms developed for racecars are useful for road cars too. This paper examines the use of Deep Reinforcement Learning (DRL) to solve the problem of grip limit driving in a simulated environment. Proximal Policy Optimization (PPO) method is used to train an agent to control the steering wheel and pedals of the vehicle, using only visual inputs to achieve professional human lap times. The paper outlines the formulation of the task of time optimal driving on a race track as a deep reinforcement learning problem, and explains the chosen observations, actions, and reward functions. The results demonstrate human-like learning and driving behavior that utilize maximum tire grip potential.
- Abstract(参考訳): 近年では、自動運転が研究分野として普及している。
緊急時にはタイヤグリップ制限の制御が不可欠であるため、レースカー用に開発されたアルゴリズムは路面電車にも有用である。
本稿では, シミュレーション環境におけるグリップリミット駆動の問題を解決するために, 深部強化学習(DRL)を用いて検討する。
車両の操舵車輪とペダルを制御するためにエージェントを訓練するために、PPO(Pximal Policy Optimization)法が用いられる。
本稿では,レーストラック上での時間最適運転のタスクを,深い強化学習問題として定式化し,選択した観察,行動,報酬関数について説明する。
その結果,最大タイヤグリップ電位を利用した人間的な学習と運転行動が示された。
関連論文リスト
- Comprehensive Training and Evaluation on Deep Reinforcement Learning for
Automated Driving in Various Simulated Driving Maneuvers [0.4241054493737716]
本研究では、DQN(Deep Q-networks)とTRPO(Trust Region Policy Optimization)の2つのDRLアルゴリズムの実装、評価、比較を行う。
設計されたComplexRoads環境で訓練されたモデルは、他の運転操作にうまく適応でき、全体的な性能が期待できる。
論文 参考訳(メタデータ) (2023-06-20T11:41:01Z) - FastRLAP: A System for Learning High-Speed Driving via Deep RL and
Autonomous Practicing [71.76084256567599]
本稿では、自律型小型RCカーを強化学習(RL)を用いた視覚的観察から積極的に駆動するシステムを提案する。
我々のシステムであるFastRLAP (faster lap)は、人間の介入なしに、シミュレーションや専門家によるデモンストレーションを必要とせず、現実世界で自律的に訓練する。
結果として得られたポリシーは、タイミングブレーキや回転の加速度などの突発的な運転スキルを示し、ロボットの動きを妨げる領域を避け、トレーニングの途中で同様の1対1のインタフェースを使用して人間のドライバーのパフォーマンスにアプローチする。
論文 参考訳(メタデータ) (2023-04-19T17:33:47Z) - FBLNet: FeedBack Loop Network for Driver Attention Prediction [50.936478241688114]
非客観的運転経験のモデル化は困難であり,既存手法では運転経験蓄積手順を模擬する機構が欠如している。
本稿では,運転経験蓄積手順をモデル化するFeedBack Loop Network (FBLNet)を提案する。
提案モデルでは,既存の手法に対して強い優位性を示し,2つのドライバー注意ベンチマークデータセットの性能向上を実現している。
論文 参考訳(メタデータ) (2022-12-05T08:25:09Z) - Exploring the trade off between human driving imitation and safety for
traffic simulation [0.34410212782758043]
運転方針の学習において,人間の運転の模倣と安全維持との間にはトレードオフが存在することを示す。
両目的を協調的に改善する多目的学習アルゴリズム(MOPPO)を提案する。
論文 参考訳(メタデータ) (2022-08-09T14:30:19Z) - Tackling Real-World Autonomous Driving using Deep Reinforcement Learning [63.3756530844707]
本研究では,加速と操舵角度を予測するニューラルネットワークを学習するモデルレスディープ強化学習プランナを提案する。
実際の自動運転車にシステムをデプロイするために、我々は小さなニューラルネットワークで表されるモジュールも開発する。
論文 参考訳(メタデータ) (2022-07-05T16:33:20Z) - Adversarial Deep Reinforcement Learning for Trustworthy Autonomous
Driving Policies [5.254093731341154]
我々は、自動運転車の深い強化学習ポリシーの改善を支援するために、敵対的な例が利用できることを示した。
高忠実度都市運転シミュレーション環境と視覚ベース運転エージェントを用いて、敵プレイヤーを用いて再訓練した自動運転車が、その運転ポリシーの性能を著しく向上させることを実証した。
論文 参考訳(メタデータ) (2021-12-22T15:00:16Z) - Vision-Based Autonomous Car Racing Using Deep Imitative Reinforcement
Learning [13.699336307578488]
深層模倣強化学習(DIRL)は、視覚入力を使用してアジャイルな自律レースを実現する。
我々は,高忠実性運転シミュレーションと実世界の1/20スケールRC-car上での車載計算の制限により,本アルゴリズムの有効性を検証した。
論文 参考訳(メタデータ) (2021-07-18T00:00:48Z) - Learning from Simulation, Racing in Reality [126.56346065780895]
ミニチュアレースカープラットフォーム上で自律的なレースを行うための強化学習ベースのソリューションを提案する。
シミュレーションで純粋に訓練されたポリシーは、実際のロボットのセットアップにうまく移行できることを示す。
論文 参考訳(メタデータ) (2020-11-26T14:58:49Z) - Super-Human Performance in Gran Turismo Sport Using Deep Reinforcement
Learning [39.719051858649216]
高忠実度物理カーシミュレーションを利用した自律走行車レース学習システムを提案する。
私たちは、異なるレースカーとトラックのリアルな物理シミュレーションで知られている世界主導の自動車シミュレータであるGran Turismo Sportにシステムをデプロイしました。
私たちのトレーニングされたポリシーは、組み込みAIによってこれまで達成された以上の自律的なレースパフォーマンスを実現しています。
論文 参考訳(メタデータ) (2020-08-18T15:06:44Z) - Learning Accurate and Human-Like Driving using Semantic Maps and
Attention [152.48143666881418]
本稿では,より正確かつ人間らしく運転できるエンド・ツー・エンド駆動モデルについて検討する。
HERE Technologiesのセマンティックマップとビジュアルマップを活用し、既存のDrive360データセットを拡張します。
私たちのモデルは、実世界の運転データ60時間3000kmのDrive360+HEREデータセットでトレーニングされ、評価されています。
論文 参考訳(メタデータ) (2020-07-10T22:25:27Z) - Intelligent Roundabout Insertion using Deep Reinforcement Learning [68.8204255655161]
本稿では,多忙なラウンドアバウンドの入場を交渉できる演習計画モジュールを提案する。
提案されたモジュールは、トレーニングされたニューラルネットワークに基づいて、操作の全期間にわたって、ラウンドアバウンドに入るタイミングと方法を予測する。
論文 参考訳(メタデータ) (2020-01-03T11:16:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。