論文の概要: Satellite Federated Fine-Tuning for Foundation Models in Space Computing Power Networks
- arxiv url: http://arxiv.org/abs/2504.10403v1
- Date: Mon, 14 Apr 2025 16:52:34 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-15 16:48:43.849495
- Title: Satellite Federated Fine-Tuning for Foundation Models in Space Computing Power Networks
- Title(参考訳): 宇宙コンピューティングパワーネットワークにおける基礎モデルのための衛星フェデレーションファインチューニング
- Authors: Yan zhu, Jingyang zhu, Ting Wang, Yuanming Shi, Chunxiao Jiang, Khaled Ben Letaief,
- Abstract要約: 衛星-地上協調型ファインチューニングフレームワークを提案する。
通信資源と計算資源の両方を統合した通信戦略を導入する。
シミュレーションの結果,約33%の改善でトレーニング時間が大幅に短縮された。
- 参考スコア(独自算出の注目度): 42.14666281406915
- License:
- Abstract: Advancements in artificial intelligence (AI) and low-earth orbit (LEO) satellites have promoted the application of large remote sensing foundation models for various downstream tasks. However, direct downloading of these models for fine-tuning on the ground is impeded by privacy concerns and limited bandwidth. Satellite federated learning (FL) offers a solution by enabling model fine-tuning directly on-board satellites and aggregating model updates without data downloading. Nevertheless, for large foundation models, the computational capacity of satellites is insufficient to support effective on-board fine-tuning in traditional satellite FL frameworks. To address these challenges, we propose a satellite-ground collaborative federated fine-tuning framework. The key of the framework lies in how to reasonably decompose and allocate model components to alleviate insufficient on-board computation capabilities. During fine-tuning, satellites exchange intermediate results with ground stations or other satellites for forward propagation and back propagation, which brings communication challenges due to the special communication topology of space transmission networks, such as intermittent satellite-ground communication, short duration of satellite-ground communication windows, and unstable inter-orbit inter-satellite links (ISLs). To reduce transmission delays, we further introduce tailored communication strategies that integrate both communication and computing resources. Specifically, we propose a parallel intra-orbit communication strategy, a topology-aware satellite-ground communication strategy, and a latency-minimalization inter-orbit communication strategy to reduce space communication costs. Simulation results demonstrate significant reductions in training time with improvements of approximately 33%.
- Abstract(参考訳): 人工知能(AI)と低軌道(LEO)衛星の進歩は、様々な下流タスクに大規模なリモートセンシング基盤モデルの適用を促進している。
しかし、これらのモデルを地上で微調整するために直接ダウンロードすることは、プライバシー上の懸念と帯域幅の制限によって妨げられる。
衛星連合学習(FL)は、衛星上で直接微調整し、データをダウンロードせずにモデル更新を集約することで、解決策を提供する。
しかし、大規模な基礎モデルでは、衛星の計算能力は従来の衛星FLフレームワークで効果的な微調整を支援するには不十分である。
これらの課題に対処するため,衛星地上協調ファインチューニングフレームワークを提案する。
フレームワークの鍵は、モデルコンポーネントを合理的に分解して割り当てて、オンボードでの計算能力の不足を軽減する方法にある。
微調整の間、衛星は地上局や他の衛星と中間結果を交換して前方伝播や後方伝播を行うため、間欠的衛星地上通信、短距離衛星地上通信窓、不安定な軌道間衛星間リンク(ISL)などの宇宙送信ネットワークの特別な通信トポロジによって通信上の問題を引き起こす。
伝送遅延を低減するため,通信資源と計算機資源を一体化する通信戦略も導入する。
具体的には,並列通信戦略,トポロジを意識した衛星地上通信戦略,空間通信コスト削減のための遅延最小化通信戦略を提案する。
シミュレーションの結果,約33%の改善でトレーニング時間が大幅に短縮された。
関連論文リスト
- Low-altitude Friendly-Jamming for Satellite-Maritime Communications via Generative AI-enabled Deep Reinforcement Learning [72.72954660774002]
低地球軌道(LEO)衛星は、海上無線通信で広範囲にわたるデータ通信を支援するために使用できる。
LEO衛星を広範囲にカバーし、チャネルの開放性と組み合わせることで、通信プロセスはセキュリティ上のリスクに悩まされる可能性がある。
本稿では無人航空機による低高度衛星通信システムLEOについて述べる。
論文 参考訳(メタデータ) (2025-01-26T10:13:51Z) - A Sharded Blockchain-Based Secure Federated Learning Framework for LEO Satellite Networks [4.034610694515541]
低地球軌道(LEO)衛星ネットワークは、宇宙ベースの人工知能(AI)アプリケーションにますます不可欠である。
商業利用が拡大するにつれて、LEO衛星ネットワークはサイバー攻撃のリスクが高まる。
我々は、SBFL-LEOと呼ばれるLEOネットワークのためのシャーディングブロックチェーンベースのフェデレーション学習フレームワークを提案する。
論文 参考訳(メタデータ) (2024-11-09T10:22:52Z) - SatFed: A Resource-Efficient LEO Satellite-Assisted Heterogeneous Federated Learning Framework [19.59862482196897]
資源効率の高い衛星支援ヘテロジニアスFLフレームワークであるSatFedを提案する。
SatFedは、高度に制約された衛星地上帯域の利用を最適化するために、鮮度に基づくモデルの優先順位付けキューを実装している。
実世界のLEO衛星ネットワークを用いた実験により、SatFedは最先端のベンチマークよりも優れた性能と堅牢性を発揮することが示された。
論文 参考訳(メタデータ) (2024-09-20T13:44:00Z) - A Distance Similarity-based Genetic Optimization Algorithm for Satellite Ground Network Planning Considering Feeding Mode [53.71516191515285]
衛星データ中継ミッションの送信効率の低さは、現在システムの構築を制約している問題となっている。
本研究では,タスク間の状態特性を考慮した距離類似性に基づく遺伝的最適化アルゴリズム(DSGA)を提案し,タスク間の類似性を決定するための重み付きユークリッド距離法を提案する。
論文 参考訳(メタデータ) (2024-08-29T06:57:45Z) - Hierarchical Learning and Computing over Space-Ground Integrated Networks [40.19542938629252]
地上IoTデバイス上で,局所的に訓練されたモデルに対してグローバルアグリゲーションサービスを提供するための階層的学習・計算フレームワークを提案する。
モデルアグリゲーションのネットワークエネルギー問題を定式化し、これはDST問題であることが判明した。
代用有向グラフ上で最小スパンニングアーボラッセンスを求めることでDST問題を解決するためのトポロジカル・アウェア・エネルギ効率・ルーティング(TAEER)アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-08-26T09:05:43Z) - Satellite Federated Edge Learning: Architecture Design and Convergence Analysis [47.057886812985984]
本稿では,FEDMEGAという新しいFEELアルゴリズムを提案する。
軌道内モデルアグリゲーションのための衛星間リンク(ISL)を統合することにより、提案アルゴリズムは低データレートと断続的なGSLの使用を著しく削減する。
提案手法は,環全リデューサに基づく軌道内アグリゲーション機構と,グローバルモデルアグリゲーションのためのネットワークフローベースのトランスミッションスキームを組み合わせたものである。
論文 参考訳(メタデータ) (2024-04-02T11:59:58Z) - FedSN: A Federated Learning Framework over Heterogeneous LEO Satellite Networks [18.213174641216884]
多数の低軌道軌道(LEO)衛星が打ち上げられ、SpaceXなどの商業企業によって宇宙に投入された。
LEO衛星が搭載するマルチモーダルセンサにより、通信だけでなく、空間変調認識やリモートセンシング画像分類など、さまざまな機械学習アプリケーションにも機能する。
本稿では,これらの課題に対処するための一般FLフレームワークとしてFedSNを提案し,LEO衛星上でのデータ多様性について検討する。
論文 参考訳(メタデータ) (2023-11-02T14:47:06Z) - Deep Learning Aided Routing for Space-Air-Ground Integrated Networks
Relying on Real Satellite, Flight, and Shipping Data [79.96177511319713]
現在の海上通信は主に単なる送信資源を持つ衛星に依存しており、現代の地上無線ネットワークよりも性能が劣っている。
大陸横断航空輸送の増加に伴い、商業旅客機に依存した航空アドホックネットワークという有望な概念は、空対地およびマルチホップ空対空リンクを介して衛星ベースの海上通信を強化する可能性がある。
低軌道衛星コンステレーション、旅客機、地上基地局、船舶がそれぞれ宇宙、航空、船舶として機能する、ユビキタスな海上通信を支援するための宇宙地上統合ネットワーク(SAGIN)を提案する。
論文 参考訳(メタデータ) (2021-10-28T14:12:10Z) - Integrating LEO Satellite and UAV Relaying via Reinforcement Learning
for Non-Terrestrial Networks [51.05735925326235]
低軌道軌道(LEO)衛星のメガコンステレーションは、低レイテンシで長距離通信を可能にする可能性がある。
軌道上の星座から選択されたLEO衛星を用いて、2つの遠距離地上端末間でパケットを転送する問題について検討する。
エンドツーエンドのデータレートを最大化するためには、衛星アソシエーションとHAPロケーションを最適化する必要がある。
本稿では, 深部強化学習(DRL)と新しい動作次元低減技術を用いてこの問題に対処する。
論文 参考訳(メタデータ) (2020-05-26T05:39:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。