論文の概要: LEMUR Neural Network Dataset: Towards Seamless AutoML
- arxiv url: http://arxiv.org/abs/2504.10552v1
- Date: Mon, 14 Apr 2025 09:08:00 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-16 22:12:13.785201
- Title: LEMUR Neural Network Dataset: Towards Seamless AutoML
- Title(参考訳): LEMUR Neural Network Dataset: Seamless AutoMLを目指して
- Authors: Arash Torabi Goodarzi, Roman Kochnev, Waleed Khalid, Furui Qin, Tolgay Atinc Uzun, Yashkumar Sanjaybhai Dhameliya, Yash Kanubhai Kathiriya, Zofia Antonina Bentyn, Dmitry Ignatov, Radu Timofte,
- Abstract要約: LEMURは、ニューラルネットワークモデルのオープンソースデータセットであり、多様なアーキテクチャのためのよく構造化されたコードである。
LEMURは主に、機械学習タスクを自動化するために、大規模な言語モデルの微調整を可能にするように設計されている。
LEMURはMITライセンス下でオープンソースプロジェクトとしてリリースされ、論文が受理される。
- 参考スコア(独自算出の注目度): 34.04248949660201
- License:
- Abstract: Neural networks are fundamental in artificial intelligence, driving progress in computer vision and natural language processing. High-quality datasets are crucial for their development, and there is growing interest in datasets composed of neural networks themselves to support benchmarking, automated machine learning (AutoML), and model analysis. We introduce LEMUR, an open source dataset of neural network models with well-structured code for diverse architectures across tasks such as object detection, image classification, segmentation, and natural language processing. LEMUR is primarily designed to enable fine-tuning of large language models (LLMs) for AutoML tasks, providing a rich source of structured model representations and associated performance data. Leveraging Python and PyTorch, LEMUR enables seamless extension to new datasets and models while maintaining consistency. It integrates an Optuna-powered framework for evaluation, hyperparameter optimization, statistical analysis, and graphical insights. LEMUR provides an extension that enables models to run efficiently on edge devices, facilitating deployment in resource-constrained environments. Providing tools for model evaluation, preprocessing, and database management, LEMUR supports researchers and practitioners in developing, testing, and analyzing neural networks. Additionally, it offers an API that delivers comprehensive information about neural network models and their complete performance statistics with a single request, which can be used in experiments with code-generating large language models. The LEMUR will be released as an open source project under the MIT license upon acceptance of the paper.
- Abstract(参考訳): ニューラルネットワークは人工知能の基本であり、コンピュータビジョンと自然言語処理の進歩を推進している。
高品質なデータセットは開発に不可欠であり、ベンチマーク、自動機械学習(AutoML)、モデル分析をサポートするニューラルネットワーク自体で構成されるデータセットへの関心が高まっている。
LEMURは、オブジェクト検出、画像分類、セグメンテーション、自然言語処理といったタスクにまたがる多様なアーキテクチャのための、よく構造化されたコードを備えた、ニューラルネットワークモデルのオープンソースデータセットである。
LEMURは、主にAutoMLタスクのための大規模言語モデル(LLM)の微調整を可能にするように設計されており、構造化されたモデル表現と関連するパフォーマンスデータのリッチなソースを提供する。
PythonとPyTorchを活用することで、LEMURは一貫性を維持しながら、新しいデータセットとモデルへのシームレスな拡張を可能にする。
評価、ハイパーパラメータ最適化、統計分析、グラフィカルインサイトのためのOptunaベースのフレームワークを統合している。
LEMURは、エッジデバイス上でモデルを効率的に動作させ、リソース制約のある環境へのデプロイを容易にする拡張を提供する。
LEMURは、モデル評価、前処理、データベース管理のためのツールを提供し、ニューラルネットワークの開発、テスト、分析における研究者や実践者を支援する。
さらに、ニューラルネットワークモデルに関する包括的な情報と、その完全なパフォーマンス統計を単一のリクエストで提供するAPIも提供する。
LEMURはMITライセンス下でオープンソースプロジェクトとしてリリースされ、論文が受理される。
関連論文リスト
- On-Device Language Models: A Comprehensive Review [26.759861320845467]
資源制約のあるデバイスに計算コストの高い大規模言語モデルをデプロイする際の課題について検討する。
論文は、デバイス上での言語モデル、その効率的なアーキテクチャ、および最先端の圧縮技術について考察する。
主要モバイルメーカーによるオンデバイス言語モデルのケーススタディは、実世界の応用と潜在的な利益を実証している。
論文 参考訳(メタデータ) (2024-08-26T03:33:36Z) - NNsight and NDIF: Democratizing Access to Open-Weight Foundation Model Internals [58.83169560132308]
NNsightとNDIFを導入し、非常に大きなニューラルネットワークによって学習された表現と計算の科学的研究を可能にする。
論文 参考訳(メタデータ) (2024-07-18T17:59:01Z) - Model Share AI: An Integrated Toolkit for Collaborative Machine Learning
Model Development, Provenance Tracking, and Deployment in Python [0.0]
モデル共有AI(AIMS)は、コラボレーティブモデル開発、モデル前駆者追跡、モデルデプロイメントを合理化するように設計された、使いやすいMLOpsプラットフォームである。
AIMSは、協調的なプロジェクト空間と、見当たらない評価データに基づいてモデル提出をランク付けする標準化されたモデル評価プロセスを備えている。
AIMSでは、Scikit-Learn、Keras、PyTorch、ONNXで構築されたMLモデルを、ライブREST APIや自動生成されたWebアプリにデプロイすることができる。
論文 参考訳(メタデータ) (2023-09-27T15:24:39Z) - Stochastic Configuration Machines for Industrial Artificial Intelligence [4.57421617811378]
産業人工知能(IAI)におけるコンフィグレーションネットワーク(SCN)の役割
本稿では、効率的なモデリングとデータサイズ削減を強調するために、SCMと呼ばれる新しいランダム化学習モデルを提案する。
いくつかのベンチマークデータセットと3つの産業応用に関する実験的研究が行われている。
論文 参考訳(メタデータ) (2023-08-25T05:52:41Z) - A Cloud-based Machine Learning Pipeline for the Efficient Extraction of
Insights from Customer Reviews [0.0]
本稿では,パイプラインに統合された機械学習手法を用いて,顧客レビューから洞察を抽出するクラウドベースのシステムを提案する。
トピックモデリングには、自然言語処理用に設計されたトランスフォーマーベースニューラルネットワークを用いる。
本システムでは,このタスクの既存のトピックモデリングやキーワード抽出ソリューションよりも優れた結果が得られる。
論文 参考訳(メタデータ) (2023-06-13T14:07:52Z) - TSGM: A Flexible Framework for Generative Modeling of Synthetic Time Series [61.436361263605114]
時系列データは、研究者と産業組織間のデータの共有を妨げるため、しばしば不足または非常に敏感である。
本稿では,合成時系列の生成モデリングのためのオープンソースフレームワークである時系列生成モデリング(TSGM)を紹介する。
論文 参考訳(メタデータ) (2023-05-19T10:11:21Z) - OmniForce: On Human-Centered, Large Model Empowered and Cloud-Edge
Collaborative AutoML System [85.8338446357469]
我々は人間中心のAutoMLシステムであるOmniForceを紹介した。
我々は、OmniForceがAutoMLシステムを実践し、オープン環境シナリオにおける適応型AIを構築する方法について説明する。
論文 参考訳(メタデータ) (2023-03-01T13:35:22Z) - Learning to Learn with Generative Models of Neural Network Checkpoints [71.06722933442956]
ニューラルネットワークのチェックポイントのデータセットを構築し,パラメータの生成モデルをトレーニングする。
提案手法は,幅広い損失プロンプトに対するパラメータの生成に成功している。
我々は、教師付きおよび強化学習における異なるニューラルネットワークアーキテクチャとタスクに本手法を適用した。
論文 参考訳(メタデータ) (2022-09-26T17:59:58Z) - SOLIS -- The MLOps journey from data acquisition to actionable insights [62.997667081978825]
本稿では,基本的なクロスプラットフォームテンソルフレームワークとスクリプト言語エンジンを使用しながら,すべての要件をサポートする統合デプロイメントパイプラインとフリー・ツー・オペレートアプローチを提案する。
しかし、このアプローチは、実際のプロダクショングレードシステムに機械学習機能を実際にデプロイするために必要な手順やパイプラインを提供していない。
論文 参考訳(メタデータ) (2021-12-22T14:45:37Z) - Resource-Aware Pareto-Optimal Automated Machine Learning Platform [1.6746303554275583]
新プラットフォーム Resource-Aware AutoML (RA-AutoML)
RA-AutoMLは、フレキシブルで一般化されたアルゴリズムで、複数の目的に合わせた機械学習モデルを構築することができる。
論文 参考訳(メタデータ) (2020-10-30T19:37:48Z) - Auto-PyTorch Tabular: Multi-Fidelity MetaLearning for Efficient and
Robust AutoDL [53.40030379661183]
Auto-PyTorchは、完全に自動化されたディープラーニング(AutoDL)を実現するフレームワーク
ディープニューラルネットワーク(DNN)のウォームスタートとアンサンブルのためのマルチフィデリティ最適化とポートフォリオ構築を組み合わせる。
Auto-PyTorchは、いくつかの最先端の競合製品よりもパフォーマンスが良いことを示す。
論文 参考訳(メタデータ) (2020-06-24T15:15:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。