論文の概要: Molecular Learning Dynamics
- arxiv url: http://arxiv.org/abs/2504.10560v1
- Date: Mon, 14 Apr 2025 15:05:38 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-16 22:06:13.548050
- Title: Molecular Learning Dynamics
- Title(参考訳): 分子学習ダイナミクス
- Authors: Yaroslav Gusev, Vitaly Vanchurin,
- Abstract要約: 相互作用する粒子の物理的記述を二重学習記述で補足することにより、物理学習双対性を分子系に適用する。
伝統的な物理学フレームワークでは、運動方程式はラグランジュ関数から導かれるが、学習フレームワークでは、エージェント損失関数によって駆動される学習力学から同じ方程式が現れる。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: We apply the physics-learning duality to molecular systems by complementing the physical description of interacting particles with a dual learning description, where each particle is modeled as an agent minimizing a loss function. In the traditional physics framework, the equations of motion are derived from the Lagrangian function, while in the learning framework, the same equations emerge from learning dynamics driven by the agent loss function. The loss function depends on scalar quantities that describe invariant properties of all other agents or particles. To demonstrate this approach, we first infer the loss functions of oxygen and hydrogen directly from a dataset generated by the CP2K physics-based simulation of water molecules. We then employ the loss functions to develop a learning-based simulation of water molecules, which achieves comparable accuracy while being significantly more computationally efficient than standard physics-based simulations.
- Abstract(参考訳): 物理学習双対性を分子システムに適用し、相互作用する粒子の物理的記述を二重学習記述で補完することにより、各粒子を損失関数を最小化するエージェントとしてモデル化する。
伝統的な物理学フレームワークでは、運動方程式はラグランジュ関数から導かれるが、学習フレームワークでは、エージェント損失関数によって駆動される学習力学から同じ方程式が現れる。
損失関数は、他の全てのエージェントや粒子の不変性を記述するスカラー量に依存する。
このアプローチを実証するために,CP2K物理に基づく水分子シミュレーションにより生成したデータセットから直接,酸素と水素の損失関数を推定した。
次に、損失関数を用いて水分子の学習に基づくシミュレーションを開発し、標準的な物理に基づくシミュレーションよりも計算効率が優れている。
関連論文リスト
- Latent Intuitive Physics: Learning to Transfer Hidden Physics from A 3D Video [58.043569985784806]
本稿では,物理シミュレーションのための伝達学習フレームワークである潜在直観物理学を紹介する。
単一の3Dビデオから流体の隠れた性質を推測し、新しいシーンで観察された流体をシミュレートすることができる。
我々は,本モデルの有効性を3つの方法で検証する: (i) 学習されたビジュアルワールド物理を用いた新しいシーンシミュレーション, (ii) 観測された流体力学の将来予測, (iii) 教師付き粒子シミュレーション。
論文 参考訳(メタデータ) (2024-06-18T16:37:44Z) - Physics-informed machine learning of the correlation functions in bulk
fluids [2.1255150235172837]
オルンシュタイン・ザーニーク方程式(オルンシュタイン・ザーニークりょうり、英: Ornstein-Zernike equation)は、液体の現代的な積分方程式理論におけるペア相関関数計算の基本的な方程式である。
この研究では、特に物理インフォームドニューラルネットワークや物理インフォームドニューラルネットワークといった機械学習モデルを用いて、OZ方程式を解く。
論文 参考訳(メタデータ) (2023-09-02T00:11:48Z) - Machine learning of hidden variables in multiscale fluid simulation [77.34726150561087]
流体力学方程式を解くには、しばしばミクロ物理学の欠如を考慮に入れた閉包関係を用いる必要がある。
本研究では, 終端微分可能な偏微分方程式シミュレータを用いて, 偏微分ニューラルネットワークを訓練する。
本手法により, 非線形, 大型クヌーズン数プラズマ物理を再現する方程式に基づく手法が可能であることを示す。
論文 参考訳(メタデータ) (2023-06-19T06:02:53Z) - Data-driven, multi-moment fluid modeling of Landau damping [6.456946924438425]
プラズマ系の流体偏微分方程式(PDE)を学習するために,ディープラーニングアーキテクチャを適用した。
学習した多モーメント流体PDEはランダウ減衰などの運動効果を取り入れることを示した。
論文 参考訳(メタデータ) (2022-09-10T19:06:12Z) - Physics-informed machine learning with differentiable programming for
heterogeneous underground reservoir pressure management [64.17887333976593]
地下貯水池の過圧化を避けることは、CO2の沈殿や排水の注入といった用途に欠かせない。
地中における複雑な不均一性のため, 噴射・抽出制御による圧力管理は困難である。
過圧化防止のための流体抽出速度を決定するために、フル物理モデルと機械学習を用いた微分可能プログラミングを用いる。
論文 参考訳(メタデータ) (2022-06-21T20:38:13Z) - NeuroFluid: Fluid Dynamics Grounding with Particle-Driven Neural
Radiance Fields [65.07940731309856]
深層学習は流体のような複雑な粒子系の物理力学をモデル化する大きな可能性を示している。
本稿では,流体力学グラウンドリング(fluid dynamics grounding)として知られる,部分的に観測可能なシナリオについて考察する。
我々はNeuroFluidという2段階の異なるネットワークを提案する。
初期形状、粘度、密度が異なる流体の基礎物理学を合理的に推定することが示されている。
論文 参考訳(メタデータ) (2022-03-03T15:13:29Z) - Physics Informed RNN-DCT Networks for Time-Dependent Partial
Differential Equations [62.81701992551728]
時間依存偏微分方程式を解くための物理インフォームド・フレームワークを提案する。
我々のモデルは離散コサイン変換を用いて空間的および反復的なニューラルネットワークを符号化する。
ナヴィエ・ストークス方程式に対するテイラー・グリーン渦解の実験結果を示す。
論文 参考訳(メタデータ) (2022-02-24T20:46:52Z) - Machine learning accelerated computational fluid dynamics [9.077691121640333]
二次元乱流のモデリングにエンド・ツー・エンド・ディープ・ラーニングを用いて計算流体力学の近似を改良する。
乱流の直接数値シミュレーションと大規模渦シミュレーションでは,各空間次元の8~10倍の微細分解能を持つベースラインソルバと同程度に精度が高い。
提案手法は,機械学習とハードウェアアクセラレータを応用して,精度や一般化を犠牲にすることなくシミュレーションを改善する方法を示す。
論文 参考訳(メタデータ) (2021-01-28T19:10:00Z) - Learning to Simulate Complex Physics with Graph Networks [68.43901833812448]
本稿では,機械学習のフレームワークとモデルの実装について紹介する。
グラフネットワーク・ベース・シミュレータ(GNS)と呼ばれる我々のフレームワークは、グラフ内のノードとして表現された粒子で物理系の状態を表現し、学習されたメッセージパスによって動的を計算します。
我々のモデルは,訓練中に数千の粒子による1段階の予測から,異なる初期条件,数千の時間ステップ,少なくとも1桁以上の粒子をテスト時に一般化できることを示す。
論文 参考訳(メタデータ) (2020-02-21T16:44:28Z) - Physics Informed Deep Learning for Transport in Porous Media. Buckley
Leverett Problem [0.0]
貯水池モデリングのためのハイブリッド物理に基づく機械学習手法を提案する。
この手法は、物理に基づく正則化を伴う一連の深い敵対的ニューラルネットワークアーキテクチャに依存している。
提案手法は,物理知識を機械学習アルゴリズムに応用するためのシンプルでエレガントな手法である。
論文 参考訳(メタデータ) (2020-01-15T08:20:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。