論文の概要: Machine learning accelerated computational fluid dynamics
- arxiv url: http://arxiv.org/abs/2102.01010v1
- Date: Thu, 28 Jan 2021 19:10:00 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-13 11:12:35.190414
- Title: Machine learning accelerated computational fluid dynamics
- Title(参考訳): 機械学習による計算流体力学の高速化
- Authors: Dmitrii Kochkov, Jamie A. Smith, Ayya Alieva, Qing Wang, Michael P.
Brenner, Stephan Hoyer
- Abstract要約: 二次元乱流のモデリングにエンド・ツー・エンド・ディープ・ラーニングを用いて計算流体力学の近似を改良する。
乱流の直接数値シミュレーションと大規模渦シミュレーションでは,各空間次元の8~10倍の微細分解能を持つベースラインソルバと同程度に精度が高い。
提案手法は,機械学習とハードウェアアクセラレータを応用して,精度や一般化を犠牲にすることなくシミュレーションを改善する方法を示す。
- 参考スコア(独自算出の注目度): 9.077691121640333
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Numerical simulation of fluids plays an essential role in modeling many
physical phenomena, such as weather, climate, aerodynamics and plasma physics.
Fluids are well described by the Navier-Stokes equations, but solving these
equations at scale remains daunting, limited by the computational cost of
resolving the smallest spatiotemporal features. This leads to unfavorable
trade-offs between accuracy and tractability. Here we use end-to-end deep
learning to improve approximations inside computational fluid dynamics for
modeling two-dimensional turbulent flows. For both direct numerical simulation
of turbulence and large eddy simulation, our results are as accurate as
baseline solvers with 8-10x finer resolution in each spatial dimension,
resulting in 40-80x fold computational speedups. Our method remains stable
during long simulations, and generalizes to forcing functions and Reynolds
numbers outside of the flows where it is trained, in contrast to black box
machine learning approaches. Our approach exemplifies how scientific computing
can leverage machine learning and hardware accelerators to improve simulations
without sacrificing accuracy or generalization.
- Abstract(参考訳): 流体の数値シミュレーションは、気象、気候、空力学、プラズマ物理学など多くの物理現象のモデル化において重要な役割を果たす。
流体はナヴィエ・ストークス方程式によってよく説明されるが、これらの方程式を大規模に解くことは、最小の時空間的特徴を解く計算コストによって制限される。
これは正確性と扱いやすさの間の不利なトレードオフにつながる。
ここでは,2次元乱流のモデリングにエンド・ツー・エンドのディープラーニングを用いて計算流体力学の近似を改良する。
乱流の直接数値シミュレーションと大規模渦シミュレーションでは,各空間次元の8~10倍の分解能を持つベースラインソルバと同じ精度で計算速度が40~80倍に向上した。
提案手法は, 長期シミュレーションにおいて安定であり, ブラックボックス機械学習のアプローチとは対照的に, トレーニングフロー外の強制関数やレイノルズ数に一般化する。
提案手法は,機械学習とハードウェアアクセラレータを応用して,精度や一般化を犠牲にすることなくシミュレーションを改善する方法を示す。
関連論文リスト
- Gaussian Splatting to Real World Flight Navigation Transfer with Liquid Networks [93.38375271826202]
本研究では,シミュレート・トゥ・リアルな視覚四重項ナビゲーションタスクにおける分布シフトに対する一般化とロバスト性を改善する手法を提案する。
まず,擬似飛行力学とガウススプラッティングを統合してシミュレータを構築し,その後,液状ニューラルネットワークを用いてロバストなナビゲーションポリシーを訓練する。
このようにして、我々は3次元ガウススプラッティングラディアンス場レンダリング、専門家による実演訓練データのプログラミング、およびLiquid Networkのタスク理解能力の進歩を組み合わせたフルスタックの模倣学習プロトコルを得る。
論文 参考訳(メタデータ) (2024-06-21T13:48:37Z) - Physics-enhanced Neural Operator for Simulating Turbulent Transport [9.923888452768919]
本稿では、偏微分方程式(PDE)の物理知識を取り入れた物理強化型ニューラル演算子(PENO)について、正確に流れのダイナミクスをモデル化する。
提案手法は,2つの異なる3次元乱流データに対して,その性能評価を行う。
論文 参考訳(メタデータ) (2024-05-31T20:05:17Z) - Differentiable Turbulence II [0.0]
そこで我々は,Navier-Stokes方程式を解くために,ディープラーニングモデルを汎用有限要素数値スキームに統合するためのフレームワークを開発した。
学習したクロージャは、より微細なグリッド上の従来の大規模渦シミュレーションに匹敵する精度で10倍のスピードアップを達成できることを示す。
論文 参考訳(メタデータ) (2023-07-25T14:27:49Z) - Machine learning of hidden variables in multiscale fluid simulation [77.34726150561087]
流体力学方程式を解くには、しばしばミクロ物理学の欠如を考慮に入れた閉包関係を用いる必要がある。
本研究では, 終端微分可能な偏微分方程式シミュレータを用いて, 偏微分ニューラルネットワークを訓練する。
本手法により, 非線形, 大型クヌーズン数プラズマ物理を再現する方程式に基づく手法が可能であることを示す。
論文 参考訳(メタデータ) (2023-06-19T06:02:53Z) - FluidLab: A Differentiable Environment for Benchmarking Complex Fluid
Manipulation [80.63838153351804]
複雑な流体力学を含む多種多様な操作タスクを備えたシミュレーション環境であるFluidLabを紹介する。
私たちのプラットフォームの中心には、GPU加速シミュレーションと勾配計算を提供する、完全に微分可能な物理シミュレータがあります。
微分可能物理学と組み合わせたいくつかのドメイン固有最適化スキームを提案する。
論文 参考訳(メタデータ) (2023-03-04T07:24:22Z) - Continual learning autoencoder training for a particle-in-cell
simulation via streaming [52.77024349608834]
今後のエクサスケール時代は 次世代の物理シミュレーションを 高解像度で提供します
これらのシミュレーションは高解像度であり、ディスク上に大量のシミュレーションデータを格納することはほぼ不可能であるため、機械学習モデルのトレーニングに影響を与える。
この研究は、ディスク上のデータなしで、実行中のシミュレーションにニューラルネットワークを同時にトレーニングするアプローチを示す。
論文 参考訳(メタデータ) (2022-11-09T09:55:14Z) - Learning Large-scale Subsurface Simulations with a Hybrid Graph Network
Simulator [57.57321628587564]
本研究では3次元地下流体の貯留層シミュレーションを学習するためのハイブリッドグラフネットワークシミュレータ (HGNS) を提案する。
HGNSは、流体の進化をモデル化する地下グラフニューラルネットワーク(SGNN)と、圧力の進化をモデル化する3D-U-Netで構成されている。
産業標準地下フローデータセット(SPE-10)と1100万セルを用いて,HGNSが標準地下シミュレータの18倍の推算時間を短縮できることを実証した。
論文 参考訳(メタデータ) (2022-06-15T17:29:57Z) - Fast Aquatic Swimmer Optimization with Differentiable Projective
Dynamics and Neural Network Hydrodynamic Models [23.480913364381664]
水面移動(Aquatic locomotion)は、生物学者や技術者が関心を持つ古典的な流体構造相互作用(FSI)問題である。
本研究では, 変形可能なスイマーの固体構造に対する2次元数値シミュレーションを組み合わせた, FSI に完全微分可能な新しいハイブリッド手法を提案する。
2次元キャランギフォームスイマーにおけるハイブリッドシミュレータの計算効率と微分性を示す。
論文 参考訳(メタデータ) (2022-03-30T15:21:44Z) - Machine learning for rapid discovery of laminar flow channel wall
modifications that enhance heat transfer [56.34005280792013]
任意の, 平坦な, 非平坦なチャネルの正確な数値シミュレーションと, ドラッグ係数とスタントン数を予測する機械学習モデルを組み合わせる。
畳み込みニューラルネットワーク(CNN)は,数値シミュレーションのわずかな時間で,目標特性を正確に予測できることを示す。
論文 参考訳(メタデータ) (2021-01-19T16:14:02Z) - Teaching the Incompressible Navier-Stokes Equations to Fast Neural
Surrogate Models in 3D [4.981834139548193]
本稿では,最近提案された2Dの課題に対処する深層学習フレームワークの大幅な拡張について述べる。
2Dから3Dへ移行し、メモリと計算の複雑さの観点から3Dグリッドの高要求に対処する効率的なアーキテクチャを提案する。
提案手法は,現行の3次元NN流体モデルよりも精度,速度,一般化能力が向上したことを示す。
論文 参考訳(メタデータ) (2020-12-22T09:21:40Z) - Learning Incompressible Fluid Dynamics from Scratch -- Towards Fast,
Differentiable Fluid Models that Generalize [7.707887663337803]
最近のディープラーニングベースのアプローチは、膨大なスピードアップを約束するが、新しい流体ドメインには一般化しない。
本稿では,新しい流体領域に一般化する物理制約付きトレーニング手法を提案する。
トレーニングされたモデルの速度と一般化能力を示すインタラクティブなリアルタイムデモを提示する。
論文 参考訳(メタデータ) (2020-06-15T20:59:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。