論文の概要: Acquisition of high-quality images for camera calibration in robotics applications via speech prompts
- arxiv url: http://arxiv.org/abs/2504.11031v1
- Date: Tue, 15 Apr 2025 09:54:43 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-16 22:06:45.757497
- Title: Acquisition of high-quality images for camera calibration in robotics applications via speech prompts
- Title(参考訳): 音声によるロボット工学応用におけるカメラキャリブレーションのための高品質画像の取得
- Authors: Timm Linder, Kadir Yilmaz, David B. Adrian, Bastian Leibe,
- Abstract要約: クリップオンマイクで記録された音声コマンドによって制御される新しいキャリブレーション画像取得手法を提案する。
我々は、単語ごとのタイムスタンプを正確に表現した最先端の音声テキスト書き起こしモデルを用いて、正確な時間的アライメントでトリガー語をキャプチャする。
- 参考スコア(独自算出の注目度): 11.869972521272746
- License:
- Abstract: Accurate intrinsic and extrinsic camera calibration can be an important prerequisite for robotic applications that rely on vision as input. While there is ongoing research on enabling camera calibration using natural images, many systems in practice still rely on using designated calibration targets with e.g. checkerboard patterns or April tag grids. Once calibration images from different perspectives have been acquired and feature descriptors detected, those are typically used in an optimization process to minimize the geometric reprojection error. For this optimization to converge, input images need to be of sufficient quality and particularly sharpness; they should neither contain motion blur nor rolling-shutter artifacts that can arise when the calibration board was not static during image capture. In this work, we present a novel calibration image acquisition technique controlled via voice commands recorded with a clip-on microphone, that can be more robust and user-friendly than e.g. triggering capture with a remote control, or filtering out blurry frames from a video sequence in postprocessing. To achieve this, we use a state-of-the-art speech-to-text transcription model with accurate per-word timestamping to capture trigger words with precise temporal alignment. Our experiments show that the proposed method improves user experience by being fast and efficient, allowing us to successfully calibrate complex multi-camera setups.
- Abstract(参考訳): 正確な内在型および外在型カメラキャリブレーションは、視覚を入力として依存するロボットアプリケーションにとって重要な前提条件である。
自然画像を用いたカメラキャリブレーションの実現に向けた研究が進行中であるが、実際にはgチェッカーボードパターンやエイプリルタググリッドを用いたキャリブレーションターゲットの使用に依存しているシステムが多い。
異なる視点からの校正画像を取得して特徴記述子を検出すると、幾何再射誤差を最小限に抑えるために最適化プロセスで使用されるのが一般的である。
この最適化を収束させるためには、入力画像は十分な品質とシャープさが必要であり、画像キャプチャ中にキャリブレーションボードが静的でない場合に生じるような動きのぼけや転動シャッターアーティファクトは含まない。
本研究では、クリップオンマイクで記録された音声コマンドによって制御される新しいキャリブレーション画像取得技術を提案する。これは、例えば、リモート制御でキャプチャをトリガーしたり、後処理でビデオシーケンスからぼやけたフレームをフィルタリングしたりすることよりも、より堅牢でユーザフレンドリなものである。
これを実現するために、単語ごとのタイムスタンプを精度良く表現した最先端の音声テキスト書き起こしモデルを用いて、正確な時間的アライメントでトリガ語をキャプチャする。
実験により,提案手法は高速かつ効率的にユーザエクスペリエンスを向上し,複雑なマルチカメラ装置のキャリブレーションに成功した。
関連論文リスト
- CasCalib: Cascaded Calibration for Motion Capture from Sparse Unsynchronized Cameras [18.51320244029833]
オフザシェルフ3次元ポーズ推定器を用いた単眼画像から3次元人間のポーズを推定できるようになった。
多くの実用アプリケーションは、マルチビューキューとカメラキャリブレーションが必要な、きめ細かい絶対ポーズ情報を必要とする。
私たちのゴールは、時間同期を含む完全自動化と、固有のカメラキャリブレーションと、外部カメラキャリブレーションです。
論文 参考訳(メタデータ) (2024-05-10T23:02:23Z) - EasyHeC: Accurate and Automatic Hand-eye Calibration via Differentiable
Rendering and Space Exploration [49.90228618894857]
我々は、マーカーレスでホワイトボックスであり、より優れた精度とロバスト性を提供するEasyHeCと呼ばれる手眼校正の新しいアプローチを導入する。
我々は,2つの重要な技術 – レンダリングベースのカメラポーズの最適化と整合性に基づく共同空間探索 – を利用することを提案する。
本評価は,合成および実世界のデータセットにおいて優れた性能を示す。
論文 参考訳(メタデータ) (2023-05-02T03:49:54Z) - Online Marker-free Extrinsic Camera Calibration using Person Keypoint
Detections [25.393382192511716]
本稿では,複数のスマートエッジセンサの外部校正のためのマーカーレスオンライン手法を提案する。
本手法では,固有カメラパラメータを推定し,カメラのポーズの粗い初期推定値でプライマーを推定する。
本手法による校正は,オフライン手法による基準校正よりも低い再投影誤差が得られることを示す。
論文 参考訳(メタデータ) (2022-09-15T15:54:21Z) - A Deep Perceptual Measure for Lens and Camera Calibration [35.03926427249506]
従来のマルチイメージキャリブレーション法の代わりに,単一画像から直接カメラキャリブレーションパラメータを推定することを提案する。
大規模なパノラマデータセットから自動的に生成されたサンプルを用いて、このネットワークをトレーニングする。
そこで我々は, カメラキャリブレーションパラメータを補正した3次元物体のリアリズムの判断を参加者に依頼した。
論文 参考訳(メタデータ) (2022-08-25T18:40:45Z) - Controllable Image Enhancement [66.18525728881711]
いくつかのパラメータを制御して、複数のスタイルで高品質な画像を生成できる半自動画像強調アルゴリズムを提案する。
エンコーダ・デコーダフレームワークは、リタッチスキルを潜在コードにエンコードし、イメージ信号処理機能のパラメータにデコードする。
論文 参考訳(メタデータ) (2022-06-16T23:54:53Z) - Dynamic Event Camera Calibration [27.852239869987947]
最初の動的イベントカメラキャリブレーションアルゴリズムを提案する。
カメラとキャリブレーションパターンの間の相対的な動きで捉えたイベントから直接キャリブレーションする。
その結果, 得られたキャリブレーション法は, 10秒未満のデータ列から, 極めて有用かつ確実なキャリブレーションを行うことができた。
論文 参考訳(メタデータ) (2021-07-14T14:52:58Z) - How to Calibrate Your Event Camera [58.80418612800161]
画像再構成を用いた汎用イベントカメラキャリブレーションフレームワークを提案する。
ニューラルネットワークに基づく画像再構成は,イベントカメラの内在的・外在的キャリブレーションに適していることを示す。
論文 参考訳(メタデータ) (2021-05-26T07:06:58Z) - Motion-blurred Video Interpolation and Extrapolation [72.3254384191509]
本稿では,映像から鮮明なフレームをエンドツーエンドに切り離し,補間し,外挿する新しい枠組みを提案する。
予測フレーム間の時間的コヒーレンスを確保し,潜在的な時間的あいまいさに対処するために,単純で効果的なフローベースルールを提案する。
論文 参考訳(メタデータ) (2021-03-04T12:18:25Z) - Infrastructure-based Multi-Camera Calibration using Radial Projections [117.22654577367246]
パターンベースのキャリブレーション技術は、カメラの内在を個別にキャリブレーションするために使用することができる。
Infrastucture-based calibration techniqueはSLAMやStructure-from-Motionで事前に構築した3Dマップを用いて外部情報を推定することができる。
本稿では,インフラストラクチャベースのアプローチを用いて,マルチカメラシステムをスクラッチから完全にキャリブレーションすることを提案する。
論文 参考訳(メタデータ) (2020-07-30T09:21:04Z) - A Modified Fourier-Mellin Approach for Source Device Identification on
Stabilized Videos [72.40789387139063]
マルチメディアの法医学ツールは通常 取得したフレームに カメラセンサーが残した 特徴的なノイズの痕跡を利用する
この分析では,カメラを特徴付けるノイズパターンと,解析対象の映像フレームから抽出したノイズパターンを幾何学的に整列させる必要がある。
本稿では,周波数領域におけるスケーリングと回転パラメータの探索により,この制限を克服することを提案する。
論文 参考訳(メタデータ) (2020-05-20T12:06:40Z) - Superaccurate Camera Calibration via Inverse Rendering [0.19336815376402716]
逆レンダリングの原理を用いたカメラキャリブレーションの新しい手法を提案する。
検出された特徴点のみに頼らず、内部パラメータの推定と校正対象のポーズを用いて光学的特徴の非フォトリアリスティックな等価性を暗黙的に描画する。
論文 参考訳(メタデータ) (2020-03-20T10:26:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。