Using Time Structure to Estimate Causal Effects
- URL: http://arxiv.org/abs/2504.11076v1
- Date: Tue, 15 Apr 2025 11:21:37 GMT
- Title: Using Time Structure to Estimate Causal Effects
- Authors: Tom Hochsprung, Jakob Runge, Andreas Gerhardus,
- Abstract summary: We present a novel approach for estimating direct (and via Wright's path rule total) causal effects in a time series setup.<n>This approach assumes that the underlying time series is a Structural Vector Autoregressive process.
- Score: 12.658042559371712
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: There exist several approaches for estimating causal effects in time series when latent confounding is present. Many of these approaches rely on additional auxiliary observed variables or time series such as instruments, negative controls or time series that satisfy the front- or backdoor criterion in certain graphs. In this paper, we present a novel approach for estimating direct (and via Wright's path rule total) causal effects in a time series setup which does not rely on additional auxiliary observed variables or time series. This approach assumes that the underlying time series is a Structural Vector Autoregressive (SVAR) process and estimates direct causal effects by solving certain linear equation systems made up of different covariances and model parameters. We state sufficient graphical criteria in terms of the so-called full time graph under which these linear equations systems are uniquely solvable and under which their solutions contain the to-be-identified direct causal effects as components. We also state sufficient lag-based criteria under which the previously mentioned graphical conditions are satisfied and, thus, under which direct causal effects are identifiable. Several numerical experiments underline the correctness and applicability of our results.
Related papers
- Graph Neural Flows for Unveiling Systemic Interactions Among Irregularly Sampled Time Series [5.460420960898444]
We develop a graph-based model that unveils the systemic interactions of time series observed at irregular time points.
We validate our approach on several tasks, including time series classification and forecasting, to demonstrate its efficacy.
arXiv Detail & Related papers (2024-10-17T21:10:39Z) - On the Identification of Temporally Causal Representation with Instantaneous Dependence [50.14432597910128]
Temporally causal representation learning aims to identify the latent causal process from time series observations.
Most methods require the assumption that the latent causal processes do not have instantaneous relations.
We propose an textbfIDentification framework for instantanetextbfOus textbfLatent dynamics.
arXiv Detail & Related papers (2024-05-24T08:08:05Z) - Graph Spatiotemporal Process for Multivariate Time Series Anomaly
Detection with Missing Values [67.76168547245237]
We introduce a novel framework called GST-Pro, which utilizes a graphtemporal process and anomaly scorer to detect anomalies.
Our experimental results show that the GST-Pro method can effectively detect anomalies in time series data and outperforms state-of-the-art methods.
arXiv Detail & Related papers (2024-01-11T10:10:16Z) - Causal Temporal Regime Structure Learning [49.77103348208835]
We present CASTOR, a novel method that concurrently learns the Directed Acyclic Graph (DAG) for each regime.<n>We establish the identifiability of the regimes and DAGs within our framework.<n>Experiments show that CASTOR consistently outperforms existing causal discovery models.
arXiv Detail & Related papers (2023-11-02T17:26:49Z) - CARLA: Self-supervised Contrastive Representation Learning for Time Series Anomaly Detection [53.83593870825628]
One main challenge in time series anomaly detection (TSAD) is the lack of labelled data in many real-life scenarios.
Most of the existing anomaly detection methods focus on learning the normal behaviour of unlabelled time series in an unsupervised manner.
We introduce a novel end-to-end self-supervised ContrAstive Representation Learning approach for time series anomaly detection.
arXiv Detail & Related papers (2023-08-18T04:45:56Z) - Causal discovery for time series with constraint-based model and PMIME
measure [0.0]
We present a novel approach for discovering causality in time series data that combines a causal discovery algorithm with an information theoretic-based measure.
We evaluate the performance of our approach on several simulated data sets, showing promising results.
arXiv Detail & Related papers (2023-05-31T09:38:50Z) - Learning the Dynamics of Sparsely Observed Interacting Systems [0.6021787236982659]
We address the problem of learning the dynamics of an unknown non-parametric system linking a target and a feature time series.
By leveraging the rich theory of signatures, we are able to cast this non-linear problem as a high-dimensional linear regression.
arXiv Detail & Related papers (2023-01-27T10:48:28Z) - TACTiS: Transformer-Attentional Copulas for Time Series [76.71406465526454]
estimation of time-varying quantities is a fundamental component of decision making in fields such as healthcare and finance.
We propose a versatile method that estimates joint distributions using an attention-based decoder.
We show that our model produces state-of-the-art predictions on several real-world datasets.
arXiv Detail & Related papers (2022-02-07T21:37:29Z) - Consistency of mechanistic causal discovery in continuous-time using
Neural ODEs [85.7910042199734]
We consider causal discovery in continuous-time for the study of dynamical systems.
We propose a causal discovery algorithm based on penalized Neural ODEs.
arXiv Detail & Related papers (2021-05-06T08:48:02Z) - Efficient Variational Bayesian Structure Learning of Dynamic Graphical
Models [19.591265962713837]
Estimating time-varying graphical models is of paramount importance in various social, financial, biological, and engineering systems.
Existing methods require extensive tuning of parameters that control the graph sparsity and temporal smoothness.
We propose a low-complexity tuning-free Bayesian approach, named BADGE.
arXiv Detail & Related papers (2020-09-16T14:19:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.