論文の概要: Traffic Adaptive Moving-window Service Patrolling for Real-time Incident Management during High-impact Events
- arxiv url: http://arxiv.org/abs/2504.11570v1
- Date: Tue, 15 Apr 2025 19:25:50 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-17 14:38:28.968632
- Title: Traffic Adaptive Moving-window Service Patrolling for Real-time Incident Management during High-impact Events
- Title(参考訳): 高インパクトイベントにおけるリアルタイムインシデント管理のための交通適応型移動ウィンドウサービスパロリング
- Authors: Haozhe Lei, Ya-Ting Yang, Tao Li, Zilin Bian, Fan Zuo, Sundeep Rangan, Kaan Ozbay,
- Abstract要約: 本稿では,スポーツトーナメントやコンサートなどのイベントにおけるリアルタイムインシデント管理を改善するために,交通適応型移動ウィンドウパロリングアルゴリズム(TAMPA)を提案する。
動的プログラミングを用いて、短い計画ウィンドウ内のパトロール戦略を継続的に調整し、即時応答と効率的なルーティングを効果的にバランスさせる。
都市交通ネットワークによるシミュレーションの結果は、TAMPAの優れた性能を示し、定常的手法で約87.5%、ランダム戦略で114.2%の改善を示した。
- 参考スコア(独自算出の注目度): 15.777808514645697
- License:
- Abstract: This paper presents the Traffic Adaptive Moving-window Patrolling Algorithm (TAMPA), designed to improve real-time incident management during major events like sports tournaments and concerts. Such events significantly stress transportation networks, requiring efficient and adaptive patrol solutions. TAMPA integrates predictive traffic modeling and real-time complaint estimation, dynamically optimizing patrol deployment. Using dynamic programming, the algorithm continuously adjusts patrol strategies within short planning windows, effectively balancing immediate response and efficient routing. Leveraging the Dvoretzky-Kiefer-Wolfowitz inequality, TAMPA detects significant shifts in complaint patterns, triggering proactive adjustments in patrol routes. Theoretical analyses ensure performance remains closely aligned with optimal solutions. Simulation results from an urban traffic network demonstrate TAMPA's superior performance, showing improvements of approximately 87.5\% over stationary methods and 114.2\% over random strategies. Future work includes enhancing adaptability and incorporating digital twin technology for improved predictive accuracy, particularly relevant for events like the 2026 FIFA World Cup at MetLife Stadium.
- Abstract(参考訳): 本稿では,スポーツトーナメントやコンサートなどのイベントにおけるリアルタイムインシデント管理を改善するために,交通適応型移動ウィンドウパロリングアルゴリズム(TAMPA)を提案する。
このような出来事は輸送ネットワークを著しく強調し、効率的で適応的なパトロールソリューションを必要とした。
TAMPAは、予測トラフィックモデリングとリアルタイムの苦情推定を統合し、パトロールデプロイメントを動的に最適化する。
動的プログラミングを用いて、短い計画ウィンドウ内のパトロール戦略を継続的に調整し、即時応答と効率的なルーティングを効果的にバランスさせる。
Dvoretzky-Kiefer-Wolfowitzの不平等を利用して、TAMPAは苦情パターンの大幅な変化を検出し、パトロールルートの積極的な調整を引き起こした。
理論的解析により、性能は最適解と密接に一致している。
都市交通ネットワークによるシミュレーションの結果は、TAMPAの優れた性能を示し、定常手法で約87.5\%、ランダム戦略で約114.2\%の改善を示した。
今後の作業には、適応性の向上や予測精度の向上のためのデジタルツイン技術の導入、特にメットライフ・スタジアムで行われた2026 FIFAワールドカップのようなイベントに関連するものが含まれる。
関連論文リスト
- Monte Carlo Tree Search with Velocity Obstacles for safe and efficient motion planning in dynamic environments [49.30744329170107]
本稿では,動的障害物に関する情報を最小限に抑えた最適オンライン動作計画手法を提案する。
提案手法は,モデルシミュレーションによるオンライン最適計画のためのモンテカルロ木探索 (MCTS) と障害物回避のためのVelocity Obstacles (VO) を組み合わせた。
我々は,非線形モデル予測制御(NMPC)を含む最先端のプランナーに対して,衝突速度,計算,タスク性能の向上の観点から,我々の方法論の優位性を示す。
論文 参考訳(メタデータ) (2025-01-16T16:45:08Z) - Scalable Multi-Objective Optimization for Robust Traffic Signal Control in Uncertain Environments [7.504173535502228]
本稿では,動的かつ不確実な都市環境におけるロバストな交通信号制御のための,スケーラブルな多目的最適化手法を提案する。
都市交通の不確実性に対処する適応ハイブリッド多目的最適化アルゴリズム(AHMOA)を提案する。
シミュレーションはマンハッタン、パリ、サンパウロ、イスタンブールなど様々な都市で行われている。
論文 参考訳(メタデータ) (2024-09-20T10:42:16Z) - GARLIC: GPT-Augmented Reinforcement Learning with Intelligent Control for Vehicle Dispatching [81.82487256783674]
GARLIC: GPT拡張強化学習のフレームワーク。
本稿では,GPT強化強化学習とインテリジェント制御のフレームワークであるGARLICについて紹介する。
論文 参考訳(メタデータ) (2024-08-19T08:23:38Z) - A Graph-based Adversarial Imitation Learning Framework for Reliable & Realtime Fleet Scheduling in Urban Air Mobility [5.19664437943693]
本稿では,艦隊スケジューリング問題の包括的最適化について述べる。
また、代替ソリューションのアプローチの必要性も認識している。
新しい模倣アプローチは、目に見えない最悪のシナリオにおいて、パフォーマンスと顕著な改善を実現する。
論文 参考訳(メタデータ) (2024-07-16T18:51:24Z) - A Comparative Study of Loss Functions: Traffic Predictions in Regular
and Congestion Scenarios [0.0]
本稿では、重み解析と不均衡な分類問題から着想を得た種々の損失関数を探索し、この問題に対処する。
平均絶対誤差(MAE)を最適化する場合,MAE-Focal Loss関数が最も有効であることがわかった。
本研究は,混雑による急激な速度変化を予測する深層学習モデルの能力を高める。
論文 参考訳(メタデータ) (2023-08-29T17:44:02Z) - Research on Self-adaptive Online Vehicle Velocity Prediction Strategy
Considering Traffic Information Fusion [33.78486808705356]
一般回帰ニューラルネットワーク(GRNN)のアルゴリズムは、交通シナリオにおいて、エゴ車両、前面車両、信号機のデータセットと組み合わせられた。
都市や高速道路のシナリオでは、従来のGRNN VVP戦略と比較して予測精度が27.8%、54.5%向上する。
論文 参考訳(メタデータ) (2022-10-07T08:42:54Z) - StreamYOLO: Real-time Object Detection for Streaming Perception [84.2559631820007]
将来を予測する能力を備えたモデルを提供し、ストリーミング知覚の結果を大幅に改善する。
本稿では,複数の速度を駆動するシーンについて考察し,VasAP(Velocity-Awared streaming AP)を提案する。
本手法は,Argoverse-HDデータセットの最先端性能を実現し,SAPとVsAPをそれぞれ4.7%,VsAPを8.2%改善する。
論文 参考訳(メタデータ) (2022-07-21T12:03:02Z) - AdaPool: A Diurnal-Adaptive Fleet Management Framework using Model-Free
Deep Reinforcement Learning and Change Point Detection [34.77250498401055]
本稿では,車いすによる乗り合い環境における日中パターンを認識・適応できる適応型モデルフリー深部強化手法を提案する。
本論文では, 配車における適応論理に加えて, 動的かつ需要に応じた車両通行者マッチングと経路計画の枠組みを提案する。
論文 参考訳(メタデータ) (2021-04-01T02:14:01Z) - Distributed Multi-agent Meta Learning for Trajectory Design in Wireless
Drone Networks [151.27147513363502]
本稿では,動的無線ネットワーク環境で動作するエネルギー制約型ドローン群に対する軌道設計の問題点について検討する。
値ベース強化学習(VDRL)ソリューションとメタトレイン機構を提案する。
論文 参考訳(メタデータ) (2020-12-06T01:30:12Z) - Iterative Amortized Policy Optimization [147.63129234446197]
政策ネットワークは、継続的制御のための深層強化学習(RL)アルゴリズムの中心的な特徴である。
変分推論の観点からは、ポリシーネットワークは、ポリシー分布を直接ではなく、ネットワークパラメータを最適化する、テキスト化最適化の一形態である。
我々は,反復的アモート化ポリシ最適化により,ベンチマーク連続制御タスクの直接アモート化よりも性能が向上することが実証された。
論文 参考訳(メタデータ) (2020-10-20T23:25:42Z) - Meta-Reinforcement Learning for Trajectory Design in Wireless UAV
Networks [151.65541208130995]
ドローン基地局(DBS)は、要求が動的で予測不可能な地上ユーザーへのアップリンク接続を提供するために派遣される。
この場合、DBSの軌道は動的ユーザアクセス要求を満たすように適応的に調整されなければならない。
新たな環境に遭遇したDBSの軌道に適応するために,メタラーニングアルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-05-25T20:43:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。