論文の概要: Integrating Natural Language Prompting Tasks in Introductory Programming Courses
- arxiv url: http://arxiv.org/abs/2410.03063v1
- Date: Fri, 4 Oct 2024 01:03:25 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-03 04:06:08.343520
- Title: Integrating Natural Language Prompting Tasks in Introductory Programming Courses
- Title(参考訳): プログラミング入門科目における自然言語プロンプトタスクの統合
- Authors: Chris Kerslake, Paul Denny, David H Smith IV, James Prather, Juho Leinonen, Andrew Luxton-Reilly, Stephen MacNeil,
- Abstract要約: 本報告では、導入プログラミングコースに2つのプロンプトに焦点を当てたアクティビティを組み込むことについて検討する。
第一に、学生は自然言語のプロンプトを書き、構文上の問題解決を強調することで、計算問題を解く必要がある。
2つ目は、プロンプトとコードの関係を理解するために、提供されたフラグメントに相当するコードを生成するプロンプトを作成することである。
- 参考スコア(独自算出の注目度): 3.907735250728617
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Introductory programming courses often emphasize mastering syntax and basic constructs before progressing to more complex and interesting programs. This bottom-up approach can be frustrating for novices, shifting the focus away from problem solving and potentially making computing less appealing to a broad range of students. The rise of generative AI for code production could partially address these issues by fostering new skills via interaction with AI models, including constructing high-level prompts and evaluating code that is automatically generated. In this experience report, we explore the inclusion of two prompt-focused activities in an introductory course, implemented across four labs in a six-week module. The first requires students to solve computational problems by writing natural language prompts, emphasizing problem-solving over syntax. The second involves students crafting prompts to generate code equivalent to provided fragments, to foster an understanding of the relationship between prompts and code. Most of the students in the course had reported finding programming difficult to learn, often citing frustrations with syntax and debugging. We found that self-reported difficulty with learning programming had a strong inverse relationship with performance on traditional programming assessments such as tests and projects, as expected. However, performance on the natural language tasks was less strongly related to self-reported difficulty, suggesting they may target different skills. Learning how to communicate with AI coding models is becoming an important skill, and natural language prompting tasks may appeal to a broad range of students.
- Abstract(参考訳): 入門プログラミングコースは、より複雑で興味深いプログラムに進む前に、マスター構文と基本的な構成を強調することが多い。
このボトムアップのアプローチは、初心者にとってはイライラさせる可能性があり、問題の解決から焦点を移し、幅広い学生にとってコンピューティングの魅力を損なう可能性がある。
コード生産のための生成AIの台頭は、ハイレベルなプロンプトの構築や自動生成されるコードの評価を含む、AIモデルとのインタラクションを通じて新しいスキルを育むことによって、これらの問題に部分的に対処する可能性がある。
本経験報告では,6週間のモジュールで4つの実験室にまたがって実施された,イントロダクトリー・コースにおける2つのアクティベーションに焦点を当てた2つのアクティビティについて検討する。
第一に、学生は自然言語のプロンプトを書き、構文上の問題解決を強調することで、計算問題を解く必要がある。
2つ目は、プロンプトとコードの関係を理解するために、提供されたフラグメントに相当するコードを生成するプロンプトを作成することである。
コースの学生の多くは、プログラミングを学ぶのが難しいと報告しており、しばしば、構文やデバッグに関する不満を引用している。
学習プログラムにおける自己報告の難しさは、期待通り、テストやプロジェクトといった従来のプログラミングアセスメントのパフォーマンスと強い逆関係があることがわかりました。
しかし、自然言語タスクのパフォーマンスは、自己報告の難しさとあまり強く関連しておらず、異なるスキルをターゲットにしていることが示唆された。
AIコーディングモデルとコミュニケーションする方法を学ぶことは重要なスキルとなり、自然言語によるタスクの促進は幅広い学生にアピールする可能性がある。
関連論文リスト
- Code Interviews: Design and Evaluation of a More Authentic Assessment for Introductory Programming Assignments [15.295438618760164]
本稿では,家庭内プログラミングの課題に対する,より正確な評価手法として,コードインタビューを解説する。
コードインタビューは、学生に自分の仕事について議論するよう促し、よりニュアンスな、時には反復的な洞察を動機づけた。
我々は、学生体験、学術的整合性、作業負荷の教育など、コードインタビューの設計に関するさまざまな決定について論じる。
論文 参考訳(メタデータ) (2024-10-01T19:01:41Z) - Estimating Difficulty Levels of Programming Problems with Pre-trained Model [18.92661958433282]
プログラミング問題の難易度は、生徒の適応学習を導く上で不可欠な基準となっている。
テキスト記述とコードの解の例から,各プログラム問題の難易度自動推定の問題を定式化する。
この問題に対処するため,テキストモダリティとコードモダリティの2つの事前学習モデルを統一モデルに分割することを提案する。
論文 参考訳(メタデータ) (2024-06-13T05:38:20Z) - Probeable Problems for Beginner-level Programming-with-AI Contests [0.0]
我々は,複数の機関の学部生を対象に,2時間のプログラミングコンテストを実施している。
学生は個人またはグループで働けるようになり、AIツールを自由に使えるようになった。
これらのグループによって提出されたコードが、欠落した詳細を特定できる範囲を分析し、形式的および非公式なCS教育文脈における学習を支援する方法を特定する。
論文 参考訳(メタデータ) (2024-05-24T00:39:32Z) - Natural Language Embedded Programs for Hybrid Language Symbolic Reasoning [84.12154024070024]
本研究では,数学・記号的推論,自然言語理解,後続の課題に対処するための統合フレームワークとして,自然言語組み込みプログラム(NLEP)を提案する。
我々のアプローチは,構造化知識の自然言語表現を含むデータ構造上の関数を定義する完全なPythonプログラムを生成するよう,言語モデルに促す。
Pythonインタープリタが生成されたコードを実行し、出力をプリントする。
論文 参考訳(メタデータ) (2023-09-19T17:54:21Z) - When Do Program-of-Thoughts Work for Reasoning? [51.2699797837818]
本稿では,コードと推論能力の相関性を測定するために,複雑性に富んだ推論スコア(CIRS)を提案する。
具体的には、抽象構文木を用いて構造情報をエンコードし、論理的複雑性を計算する。
コードはhttps://github.com/zjunlp/EasyInstructのEasyInstructフレームワークに統合される。
論文 参考訳(メタデータ) (2023-08-29T17:22:39Z) - Promptly: Using Prompt Problems to Teach Learners How to Effectively
Utilize AI Code Generators [5.458849730200646]
本稿では,「プロンプト問題」として知られる新しい教育概念を紹介する。
プロンプト問題(英: Prompt Problem)は、学生が自然言語のプロンプトを作成し、LLMが特定の問題に対して正しいコードを生成するよう促す問題である。
Promptlyを初年度のPythonプログラミングコースに導入したフィールドスタディから経験的知見を報告する。
論文 参考訳(メタデータ) (2023-07-31T01:46:42Z) - Competition-Level Code Generation with AlphaCode [74.87216298566942]
より深い推論を必要とする問題に対する新しいソリューションを作成することができるコード生成システムであるAlphaCodeを紹介する。
Codeforcesプラットフォームにおける最近のプログラミングコンペティションのシミュレーション評価において、AlphaCodeは平均54.3%のランキングを達成した。
論文 参考訳(メタデータ) (2022-02-08T23:16:31Z) - ProtoTransformer: A Meta-Learning Approach to Providing Student Feedback [54.142719510638614]
本稿では,フィードバックを数発の分類として提供するという課題について考察する。
メタラーナーは、インストラクターによるいくつかの例から、新しいプログラミング質問に関する学生のコードにフィードバックを与えるように適応します。
本手法は,第1段階の大学が提供したプログラムコースにおいて,16,000名の学生試験ソリューションに対するフィードバックの提供に成功している。
論文 参考訳(メタデータ) (2021-07-23T22:41:28Z) - Leveraging Language to Learn Program Abstractions and Search Heuristics [66.28391181268645]
LAPS(Language for Abstraction and Program Search)は、自然言語アノテーションを用いて、ライブラリとニューラルネットワークによる合成のための検索モデルの共同学習をガイドする手法である。
最先端のライブラリ学習システム(DreamCoder)に統合されると、LAPSは高品質なライブラリを生成し、検索効率と一般化を改善する。
論文 参考訳(メタデータ) (2021-06-18T15:08:47Z) - Adversarial Training for Code Retrieval with Question-Description
Relevance Regularization [34.29822107097347]
入力問題から難しいコードスニペットを生成するために,簡単な逆学習手法を適用した。
本稿では,逆学習の規則化に質問記述の関連性を活用することを提案する。
我々の対角学習法は,最先端モデルの性能を向上させることができる。
論文 参考訳(メタデータ) (2020-10-19T19:32:03Z) - BUSTLE: Bottom-Up Program Synthesis Through Learning-Guided Exploration [72.88493072196094]
プログラムのボトムアップ検索に学習を活用する新しい合成手法を提案する。
特に、入力出力例のセットに基づいて、探索条件中の中間値の合成を優先順位付けするようにモデルを訓練する。
単純な教師付き学習アプローチであっても,学習とボトムアップ検索の組み合わせは極めて効果的であることを示す。
論文 参考訳(メタデータ) (2020-07-28T17:46:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。