論文の概要: Boosting the Efficiency of Metaheuristics Through Opposition-Based Learning in Optimum Locating of Control Systems in Tall Buildings
- arxiv url: http://arxiv.org/abs/2411.05864v1
- Date: Thu, 07 Nov 2024 13:05:40 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-12 14:12:27.999366
- Title: Boosting the Efficiency of Metaheuristics Through Opposition-Based Learning in Optimum Locating of Control Systems in Tall Buildings
- Title(参考訳): 高層建物の最適配置における最適学習によるメタヒューリスティックスの効率化
- Authors: Salar Farahmand-Tabar, Sina Shirgir,
- Abstract要約: 対位法に基づく学習はメタヒューリスティックアルゴリズムの性能向上に有効な手法である。
工学的問題への反対戦略の適用に関する事例研究を行う。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Opposition-based learning (OBL) is an effective approach to improve the performance of metaheuristic optimization algorithms, which are commonly used for solving complex engineering problems. This chapter provides a comprehensive review of the literature on the use of opposition strategies in metaheuristic optimization algorithms, discussing the benefits and limitations of this approach. An overview of the opposition strategy concept, its various implementations, and its impact on the performance of metaheuristic algorithms are presented. Furthermore, case studies on the application of opposition strategies in engineering problems are provided, including the optimum locating of control systems in tall building. A shear frame with Magnetorheological (MR) fluid damper is considered as a case study. The results demonstrate that the incorporation of opposition strategies in metaheuristic algorithms significantly enhances the quality and speed of the optimization process. This chapter aims to provide a clear understanding of the opposition strategy in metaheuristic optimization algorithms and its engineering applications, with the ultimate goal of facilitating its adoption in real-world engineering problems.
- Abstract(参考訳): OBL(Oopposition-based Learning)は、メタヒューリスティック最適化アルゴリズムの性能向上のための効果的な手法である。
この章はメタヒューリスティック最適化アルゴリズムにおける反対戦略の使用に関する文献を包括的にレビューし、このアプローチの利点と限界について議論する。
メタヒューリスティックアルゴリズムの性能に対する反対戦略の考え方,その実装,およびその影響について概説する。
さらに,高層建築物における制御システムの最適配置など,工学的問題への反対戦略の適用事例について考察した。
磁気粘性流体ダンパーを用いたせん断フレームをケーススタディとして検討した。
その結果,メタヒューリスティックアルゴリズムにおける反対戦略の導入は,最適化プロセスの品質と速度を大幅に向上させることが示された。
この章は、メタヒューリスティック最適化アルゴリズムとその工学的応用における反対戦略を明確に理解することを目的としています。
関連論文リスト
- Deep Reinforcement Learning for Online Optimal Execution Strategies [49.1574468325115]
本稿では,動的な金融市場における非マルコフ的最適実行戦略の学習に挑戦する。
我々は,Deep Deterministic Policy Gradient(DDPG)に基づく新しいアクター批判アルゴリズムを提案する。
提案アルゴリズムは最適実行戦略の近似に成功していることを示す。
論文 参考訳(メタデータ) (2024-10-17T12:38:08Z) - An Efficient Learning-based Solver Comparable to Metaheuristics for the
Capacitated Arc Routing Problem [67.92544792239086]
我々は,高度メタヒューリスティックスとのギャップを著しく狭めるため,NNベースの解法を導入する。
まず,方向対応型注意モデル(DaAM)を提案する。
第2に、教師付き事前学習を伴い、堅牢な初期方針を確立するための教師付き強化学習スキームを設計する。
論文 参考訳(メタデータ) (2024-03-11T02:17:42Z) - Deep Reinforcement Learning for Dynamic Algorithm Selection: A
Proof-of-Principle Study on Differential Evolution [27.607740475924448]
本稿では,この課題を実現するための強化学習に基づく動的アルゴリズム選択フレームワークを提案する。
我々は、最適な動作を推測し、アルゴリズムの選択を確実にするために、洗練されたディープニューラルネットワークモデルを用いる。
基礎研究として、この枠組みを微分進化アルゴリズム群に適用する。
論文 参考訳(メタデータ) (2024-03-04T15:40:28Z) - Explainable Benchmarking for Iterative Optimization Heuristics [0.8192907805418583]
我々は、様々な最適化アルゴリズムの性能を分析し、理解するためのIOH-Xplainerソフトウェアフレームワークを紹介する。
さまざまなアルゴリズムコンポーネントと構成の影響を調査し、さまざまなシナリオにおけるパフォーマンスに関する洞察を提供する。
論文 参考訳(メタデータ) (2024-01-31T14:02:26Z) - An Invariant Information Geometric Method for High-Dimensional Online
Optimization [9.538618632613714]
本稿では,対応するフレームワークから派生した,完全な不変性指向進化戦略アルゴリズムを提案する。
ベイズ最適化と進化戦略における主要なアルゴリズムに対してSynCMAをベンチマークする。
あらゆるシナリオにおいて、SynCMAはサンプル効率において他のアルゴリズムよりも優れた能力を示す。
論文 参考訳(メタデータ) (2024-01-03T07:06:26Z) - Analyzing and Enhancing the Backward-Pass Convergence of Unrolled
Optimization [50.38518771642365]
ディープネットワークにおけるコンポーネントとしての制約付き最適化モデルの統合は、多くの専門的な学習タスクに有望な進歩をもたらした。
この設定における中心的な課題は最適化問題の解によるバックプロパゲーションであり、しばしば閉形式を欠いている。
本稿では, 非線形最適化の後方通過に関する理論的知見を提供し, 特定の反復法による線形システムの解と等価であることを示す。
Folded Optimizationと呼ばれるシステムが提案され、非ローリングなソルバ実装からより効率的なバックプロパゲーションルールを構築する。
論文 参考訳(メタデータ) (2023-12-28T23:15:18Z) - Efficient Inverse Design Optimization through Multi-fidelity Simulations, Machine Learning, and Search Space Reduction Strategies [0.8646443773218541]
本稿では,限られた計算量で制約されたシナリオにおける逆設計最適化プロセスの拡張を目的とした手法を提案する。
提案手法はエアフォイル逆設計とスカラーフィールド再構成の2つの異なる工学的逆設計問題について解析する。
特に、この方法は、任意の逆設計アプリケーションに適用可能であり、代表的低忠実MLモデルと高忠実度シミュレーションの相乗効果を容易にし、様々な集団ベース最適化アルゴリズムにシームレスに適用することができる。
論文 参考訳(メタデータ) (2023-12-06T18:20:46Z) - DADO -- Low-Cost Query Strategies for Deep Active Design Optimization [1.6298921134113031]
我々は,多目的設計最適化問題における計算コストを削減するために,自己最適化のための2つの選択戦略を提案する。
我々は流体力学の領域から大規模データセットの戦略を評価し、モデルの性能を決定するために2つの新しい評価指標を導入する。
論文 参考訳(メタデータ) (2023-07-10T13:01:27Z) - Backpropagation of Unrolled Solvers with Folded Optimization [55.04219793298687]
ディープネットワークにおけるコンポーネントとしての制約付き最適化モデルの統合は、多くの専門的な学習タスクに有望な進歩をもたらした。
1つの典型的な戦略はアルゴリズムのアンローリングであり、これは反復解法の操作による自動微分に依存している。
本稿では,非ロール最適化の後方通過に関する理論的知見を提供し,効率よく解けるバックプロパゲーション解析モデルを生成するシステムに繋がる。
論文 参考訳(メタデータ) (2023-01-28T01:50:42Z) - Socio-cognitive Optimization of Time-delay Control Problems using
Evolutionary Metaheuristics [89.24951036534168]
メタヒューリスティックス(Metaheuristics)は、古典的なアプローチでは解決できない難解な問題を解くために使用される普遍的な最適化アルゴリズムである。
本稿では,キャストに基づく新しい社会認知メタヒューリスティックの構築を目標とし,このアルゴリズムのいくつかのバージョンを時間遅延システムモデルの最適化に適用する。
論文 参考訳(メタデータ) (2022-10-23T22:21:10Z) - Amortized Implicit Differentiation for Stochastic Bilevel Optimization [53.12363770169761]
決定論的条件と決定論的条件の両方において、二段階最適化問題を解決するアルゴリズムのクラスについて検討する。
厳密な勾配の推定を補正するために、ウォームスタート戦略を利用する。
このフレームワークを用いることで、これらのアルゴリズムは勾配の偏りのない推定値にアクセス可能な手法の計算複雑性と一致することを示す。
論文 参考訳(メタデータ) (2021-11-29T15:10:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。