論文の概要: Evolutionary Reinforcement Learning for Interpretable Decision-Making in Supply Chain Management
- arxiv url: http://arxiv.org/abs/2504.12023v1
- Date: Wed, 16 Apr 2025 12:28:35 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-17 14:37:06.602978
- Title: Evolutionary Reinforcement Learning for Interpretable Decision-Making in Supply Chain Management
- Title(参考訳): サプライチェーン管理における解釈可能な意思決定のための進化的強化学習
- Authors: Stefano Genetti, Alberto Longobardi, Giovanni Iacca,
- Abstract要約: サプライチェーン管理(SCM)は、ほとんどのAIベースのソリューションの“ブラックボックス”の性質から、高度な最適化手法を採用する上での課題に直面している。
我々は、進化計算と強化学習(RL)を組み合わせた解釈可能な人工知能(IAI)アプローチを用いて、解釈可能な意思決定ポリシーを生成する。
このIAIソリューションは、現代のサプライチェーンの固有の不確実性や振舞いを処理するために特別に設計されたシミュレーションベースの最適化フレームワークに組み込まれている。
- 参考スコア(独自算出の注目度): 3.195234044113248
- License:
- Abstract: In the context of Industry 4.0, Supply Chain Management (SCM) faces challenges in adopting advanced optimization techniques due to the "black-box" nature of most AI-based solutions, which causes reluctance among company stakeholders. To overcome this issue, in this work, we employ an Interpretable Artificial Intelligence (IAI) approach that combines evolutionary computation with Reinforcement Learning (RL) to generate interpretable decision-making policies in the form of decision trees. This IAI solution is embedded within a simulation-based optimization framework specifically designed to handle the inherent uncertainties and stochastic behaviors of modern supply chains. To our knowledge, this marks the first attempt to combine IAI with simulation-based optimization for decision-making in SCM. The methodology is tested on two supply chain optimization problems, one fictional and one from the real world, and its performance is compared against widely used optimization and RL algorithms. The results reveal that the interpretable approach delivers competitive, and sometimes better, performance, challenging the prevailing notion that there must be a trade-off between interpretability and optimization efficiency. Additionally, the developed framework demonstrates strong potential for industrial applications, offering seamless integration with various Python-based algorithms.
- Abstract(参考訳): 産業4.0の文脈では、サプライチェーンマネジメント(SCM)は、ほとんどのAIベースのソリューションの"ブラックボックス"の性質から、高度な最適化手法を採用する上での課題に直面している。
この問題を解決するために、我々は進化的計算と強化学習(RL)を組み合わせた解釈可能な人工知能(IAI)アプローチを用いて、決定木という形で解釈可能な意思決定ポリシーを生成する。
このIAIソリューションは、現代のサプライチェーンの固有の不確実性と確率的挙動を扱うために特別に設計されたシミュレーションベースの最適化フレームワークに組み込まれている。
我々の知る限り、これはSCMにおける意思決定のためのシミュレーションベースの最適化とIAIを組み合わせた最初の試みである。
本手法は,実世界の2つのサプライチェーン最適化問題に対して検証を行い,その性能を広く用いられている最適化アルゴリズムとRLアルゴリズムと比較した。
その結果、解釈可能なアプローチは競争力があり、時にはパフォーマンスが向上し、解釈可能性と最適化効率の間にトレードオフがあるという一般的な概念に挑戦することが明らかとなった。
さらに、開発されたフレームワークは、様々なPythonベースのアルゴリズムとのシームレスな統合を提供する、産業アプリケーションに対する強力な可能性を示している。
関連論文リスト
- Efficient and Scalable Deep Reinforcement Learning for Mean Field Control Games [16.62770187749295]
平均場制御ゲーム(MFCG)は、無限に多くの相互作用するエージェントのシステムを解析するための強力な理論的枠組みを提供する。
本稿では,MFCGの近似平衡解に対する拡張性のある深層強化学習(RL)手法を提案する。
論文 参考訳(メタデータ) (2024-12-28T02:04:53Z) - A Survey on Inference Optimization Techniques for Mixture of Experts Models [50.40325411764262]
大規模Mixture of Experts(MoE)モデルは、条件計算によるモデル容量と計算効率の向上を提供する。
これらのモデル上で推論をデプロイし実行することは、計算資源、レイテンシ、エネルギー効率において大きな課題を示す。
本調査では,システムスタック全体にわたるMoEモデルの最適化手法について分析する。
論文 参考訳(メタデータ) (2024-12-18T14:11:15Z) - Large Language Models for Combinatorial Optimization of Design Structure Matrix [4.513609458468522]
エンジニアリングアプリケーションの効率と性能を改善するためには、組合せ最適化(CO)が不可欠である。
実世界の工学的問題に関しては、純粋数学的推論に基づくアルゴリズムは限定的であり、最適化に必要な文脈ニュアンスを捉えることができない。
本研究では,工学的CO問題の解法におけるLarge Language Models (LLMs) の可能性について,その推論能力と文脈的知識を活用して検討する。
論文 参考訳(メタデータ) (2024-11-19T15:39:51Z) - LLaMA-Berry: Pairwise Optimization for O1-like Olympiad-Level Mathematical Reasoning [56.273799410256075]
このフレームワークはMonte Carlo Tree Search (MCTS)と反復的なSelf-Refineを組み合わせて推論パスを最適化する。
このフレームワークは、一般的なベンチマークと高度なベンチマークでテストされており、探索効率と問題解決能力の点で優れた性能を示している。
論文 参考訳(メタデータ) (2024-10-03T18:12:29Z) - Model Uncertainty in Evolutionary Optimization and Bayesian Optimization: A Comparative Analysis [5.6787965501364335]
ブラックボックス最適化問題は、多くの現実世界のアプリケーションで一般的な問題である。
これらの問題はインプット・アウトプット・インタラクションを通じて内部動作へのアクセスなしに最適化する必要がある。
このような問題に対処するために2つの広く使われている勾配のない最適化手法が用いられている。
本稿では,2つの手法間のモデル不確実性の類似点と相違点を明らかにすることを目的とする。
論文 参考訳(メタデータ) (2024-03-21T13:59:19Z) - Machine Learning Insides OptVerse AI Solver: Design Principles and
Applications [74.67495900436728]
本稿では,Huawei CloudのOpsVerse AIソルバに機械学習(ML)技術を統合するための総合的研究について述べる。
本稿では,実世界の多面構造を反映した生成モデルを用いて,複雑なSATインスタンスとMILPインスタンスを生成する手法を紹介する。
本稿では,解解器性能を著しく向上させる,最先端パラメータチューニングアルゴリズムの導入について詳述する。
論文 参考訳(メタデータ) (2024-01-11T15:02:15Z) - Analyzing and Enhancing the Backward-Pass Convergence of Unrolled
Optimization [50.38518771642365]
ディープネットワークにおけるコンポーネントとしての制約付き最適化モデルの統合は、多くの専門的な学習タスクに有望な進歩をもたらした。
この設定における中心的な課題は最適化問題の解によるバックプロパゲーションであり、しばしば閉形式を欠いている。
本稿では, 非線形最適化の後方通過に関する理論的知見を提供し, 特定の反復法による線形システムの解と等価であることを示す。
Folded Optimizationと呼ばれるシステムが提案され、非ローリングなソルバ実装からより効率的なバックプロパゲーションルールを構築する。
論文 参考訳(メタデータ) (2023-12-28T23:15:18Z) - Solution to Advanced Manufacturing Process Problems using Cohort
Intelligence Algorithm with Improved Constraint Handling Approaches [0.07989135005592125]
コホートインテリジェンス(CI)アルゴリズムは、設計、製造、サプライチェーン、医療などの領域から制約のない現実の問題を解決するために、社会にインスパイアされた最適化手法である。
論文 参考訳(メタデータ) (2023-10-16T05:40:23Z) - Backpropagation of Unrolled Solvers with Folded Optimization [55.04219793298687]
ディープネットワークにおけるコンポーネントとしての制約付き最適化モデルの統合は、多くの専門的な学習タスクに有望な進歩をもたらした。
1つの典型的な戦略はアルゴリズムのアンローリングであり、これは反復解法の操作による自動微分に依存している。
本稿では,非ロール最適化の後方通過に関する理論的知見を提供し,効率よく解けるバックプロパゲーション解析モデルを生成するシステムに繋がる。
論文 参考訳(メタデータ) (2023-01-28T01:50:42Z) - Reconfigurable Intelligent Surface Assisted Mobile Edge Computing with
Heterogeneous Learning Tasks [53.1636151439562]
モバイルエッジコンピューティング(MEC)は、AIアプリケーションに自然なプラットフォームを提供します。
再構成可能なインテリジェントサーフェス(RIS)の助けを借りて、MECで機械学習タスクを実行するインフラストラクチャを提示します。
具体的には,モバイルユーザの送信パワー,基地局のビームフォーミングベクトル,risの位相シフト行列を共同で最適化することにより,参加ユーザの学習誤差を最小化する。
論文 参考訳(メタデータ) (2020-12-25T07:08:50Z) - Constrained Combinatorial Optimization with Reinforcement Learning [0.30938904602244344]
本稿では,RL(Deep Reinforcement Learning)を用いた制約付き最適化問題に対処する枠組みを提案する。
我々は、その定式化における制約に対処するために、Neural Combinatorial Optimization(NCO)理論を拡張した。
その文脈では、ソリューションは環境との相互作用に基づいて反復的に構築されます。
論文 参考訳(メタデータ) (2020-06-22T03:13:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。