論文の概要: Modality-Independent Explainable Detection of Inaccurate Organ Segmentations Using Denoising Autoencoders
- arxiv url: http://arxiv.org/abs/2504.12203v1
- Date: Wed, 16 Apr 2025 15:53:40 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-17 14:38:43.555978
- Title: Modality-Independent Explainable Detection of Inaccurate Organ Segmentations Using Denoising Autoencoders
- Title(参考訳): Denoising Autoencoders を用いた不正確な臓器切片のモダリティ非依存的説明可能検出
- Authors: Levente Lippenszky, István Megyeri, Krisztian Koos, Zsófia Karancsi, Borbála Deák-Karancsi, András Frontó, Árpád Makk, Attila Rádics, Erhan Bas, László Ruskó,
- Abstract要約: 放射線治療計画において、臓器の不正確な分節は、最適な治療のデリバリーをもたらす可能性がある。
我々は,不正確な臓器セグメントを検出するために,自己エンコーダをベースとしたデノイング法を開発した。
- 参考スコア(独自算出の注目度): 2.349794919742272
- License:
- Abstract: In radiation therapy planning, inaccurate segmentations of organs at risk can result in suboptimal treatment delivery, if left undetected by the clinician. To address this challenge, we developed a denoising autoencoder-based method to detect inaccurate organ segmentations. We applied noise to ground truth organ segmentations, and the autoencoders were tasked to denoise them. Through the application of our method to organ segmentations generated on both MR and CT scans, we demonstrated that the method is independent of imaging modality. By providing reconstructions, our method offers visual information about inaccurate regions of the organ segmentations, leading to more explainable detection of suboptimal segmentations. We compared our method to existing approaches in the literature and demonstrated that it achieved superior performance for the majority of organs.
- Abstract(参考訳): 放射線治療計画において、リスクのある臓器の不正確な分節は、臨床医が発見しなかった場合、最適な治療の成果をもたらす可能性がある。
この課題に対処するために,不正確な臓器のセグメンテーションを検出する自動エンコーダをベースとしたデノベーション手法を開発した。
地中真理器官のセグメンテーションにノイズを応用し, オートエンコーダにノイズを除去する作業を行った。
MRとCTの両方で生成した臓器のセグメンテーションへの本法の適用により,本法は画像のモダリティとは無関係であることが実証された。
再建を行うことで,臓器の領域の精度の低い領域を視覚的に把握することが可能になる。
本手法を既存手法と比較し,多くの臓器に対して優れた性能を示した。
関連論文リスト
- Deep Spectral Methods for Unsupervised Ultrasound Image Interpretation [53.37499744840018]
本稿では, 超音波を応用した非教師型深層学習手法を提案する。
我々は、スペクトルグラフ理論と深層学習法を組み合わせた教師なしディープスペクトル法から重要な概念を統合する。
スペクトルクラスタリングの自己教師型トランスフォーマー機能を利用して、超音波特有のメトリクスと形状と位置の先行値に基づいて意味のあるセグメントを生成し、データセット間のセマンティック一貫性を確保する。
論文 参考訳(メタデータ) (2024-08-04T14:30:14Z) - CT-based brain ventricle segmentation via diffusion Schrödinger Bridge without target domain ground truths [0.9720086191214947]
クリニカルCTスキャンによる高効率かつ正確な脳室分画は、腹腔鏡下手術のような緊急手術には不可欠である。
我々は,CTセグメント化の真偽を必要とせず,新しい不確実性に留意した心室分画法を導入する。
提案手法では拡散型Schr"odinger Bridgeと残像U-Netを併用し,画像診断とMRI検査を併用した。
論文 参考訳(メタデータ) (2024-05-28T15:17:58Z) - CathFlow: Self-Supervised Segmentation of Catheters in Interventional Ultrasound Using Optical Flow and Transformers [66.15847237150909]
縦型超音波画像におけるカテーテルのセグメンテーションのための自己教師型ディープラーニングアーキテクチャを提案する。
ネットワークアーキテクチャは、Attention in Attentionメカニズムで構築されたセグメンテーショントランスフォーマであるAiAReSeg上に構築されている。
我々は,シリコンオルタファントムから収集した合成データと画像からなる実験データセット上で,我々のモデルを検証した。
論文 参考訳(メタデータ) (2024-03-21T15:13:36Z) - HALOS: Hallucination-free Organ Segmentation after Organ Resection
Surgery [3.079885946230076]
最先端のセグメンテーションモデルはしばしば臓器の幻覚、すなわち臓器の偽陽性予測を引き起こす。
臓器切除術後の症例を治療するMR画像における腹部臓器分割のためのHALOSを提案する。
論文 参考訳(メタデータ) (2023-03-14T09:05:19Z) - Structure-aware registration network for liver DCE-CT images [50.28546654316009]
セグメント化誘導深層登録網に関連臓器の構造情報を組み込んだ構造認識型登録手法を提案する。
提案手法は,最新技術よりも高い登録精度を達成し,解剖学的構造を効果的に維持することができる。
論文 参考訳(メタデータ) (2023-03-08T14:08:56Z) - Reliable Joint Segmentation of Retinal Edema Lesions in OCT Images [55.83984261827332]
本稿では,信頼性の高いマルチスケールウェーブレットエンハンストランスネットワークを提案する。
本研究では,ウェーブレット型特徴抽出器ネットワークとマルチスケール変圧器モジュールを統合したセグメンテーションバックボーンを開発した。
提案手法は,他の最先端セグメンテーション手法と比較して信頼性の高いセグメンテーション精度を実現する。
論文 参考訳(メタデータ) (2022-12-01T07:32:56Z) - Distance-based detection of out-of-distribution silent failures for
Covid-19 lung lesion segmentation [0.8200989595956418]
ディープラーニングモデルは、アウト・オブ・ディストリビューションデータにサイレントに失敗するため、臨床ルーチンに信頼されていない。
特徴空間におけるマハラノビス距離を利用する軽量なOOD検出法を提案する。
胸部CT像の分布変化とMRIの2つの応用について検討した。
論文 参考訳(メタデータ) (2022-08-05T15:05:23Z) - A unified 3D framework for Organs at Risk Localization and Segmentation
for Radiation Therapy Planning [56.52933974838905]
現在の医療ワークフローは、OAR(Organs-at-risk)のマニュアル記述を必要とする
本研究は,OARローカライゼーション・セグメンテーションのための統合された3Dパイプラインの導入を目的とする。
提案手法は医用画像に固有の3Dコンテキスト情報の活用を可能にする。
論文 参考訳(メタデータ) (2022-03-01T17:08:41Z) - Anatomy-guided Multimodal Registration by Learning Segmentation without
Ground Truth: Application to Intraprocedural CBCT/MR Liver Segmentation and
Registration [12.861503169117208]
マルチモーダル画像登録は、診断医療画像と画像誘導介入に多くの応用がある。
周術期獲得診断画像を周術期内環境に登録する能力は、周術期内腫瘍ターゲティングを改善する可能性がある。
対象のモダリティ基礎真理を含まないセグメンテーション学習のためのセグメンテーションネットワーク(APA2Seg-Net)に対する解剖学的保護ドメイン適応を提案する。
論文 参考訳(メタデータ) (2021-04-14T18:07:03Z) - Automatic segmentation with detection of local segmentation failures in
cardiac MRI [1.281734910003263]
3つの最先端の畳み込みニューラルネットワーク(CNN)をトレーニングし、心臓解剖学的構造を自動的に分割した。
MICCAI 2017 ACDCチャレンジで公開されているCMRスキャンを用いて,CNNアーキテクチャとセグメンテーションにおける損失関数の影響を検討した。
自動セグメンテーションと検出されたセグメンテーション障害のシミュレートされた手動補正を組み合わせることで,統計的に有意な性能向上が得られた。
論文 参考訳(メタデータ) (2020-11-13T17:19:05Z) - Deep Reinforcement Learning for Organ Localization in CT [59.23083161858951]
我々はCTにおける臓器局所化のための深層強化学習手法を提案する。
この研究において、人工エージェントは、その主張や誤りから学習することで、CT内の臓器の局所化を積極的に行う。
本手法は,任意の臓器をローカライズするためのプラグイン・アンド・プレイモジュールとして利用できる。
論文 参考訳(メタデータ) (2020-05-11T10:06:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。