論文の概要: Replicating ReLM Results: Validating Large Language Models with ReLM
- arxiv url: http://arxiv.org/abs/2504.12357v1
- Date: Wed, 16 Apr 2025 02:58:48 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-18 14:37:24.522885
- Title: Replicating ReLM Results: Validating Large Language Models with ReLM
- Title(参考訳): ReLM結果の再現: ReLMによる大規模言語モデルの検証
- Authors: Reece Adamson, Erin Song,
- Abstract要約: このプロジェクトは、オリジナルのReLM論文の重要な成果を再現し、機械学習のシステム分野に重点を置いて、アプローチと応用について解説する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Validating Large Language Models with ReLM explores the application of formal languages to evaluate and control Large Language Models (LLMs) for memorization, bias, and zero-shot performance. Current approaches for evaluating these types behavior are often slow, imprecise, costly, or introduce biases of their own, but are necessary due to the importance of this behavior when productionizing LLMs. This project reproduces key results from the original ReLM paper and expounds on the approach and applications with an emphasis on the relevance to the field of systems for machine learning.
- Abstract(参考訳): ReLMによる大規模言語モデルの検証では、暗記、バイアス、ゼロショットのパフォーマンスのためのLLM(Large Language Models)の評価と制御のための形式言語の適用が検討されている。
これらのタイプの振る舞いを評価するための現在のアプローチは、しばしば遅く、不正確で、コストがかかるか、あるいは自分自身のバイアスを導入するが、LCMを生産する際、この振る舞いの重要性のために必要である。
このプロジェクトは、オリジナルのReLM論文の重要な成果を再現し、機械学習のシステム分野との関連性を重視したアプローチと応用について解説する。
関連論文リスト
- Real-time Verification and Refinement of Language Model Text Generation [60.04718679054704]
大規模言語モデル(LLM)は、幅広い自然言語タスクにおいて顕著な性能を示している。
重要な課題は、時に事実的に誤った答えを生じさせることである。
本稿では,LLM出力の検証と改善の効率化を目的とした新しい手法であるStreaming-VRを提案する。
論文 参考訳(メタデータ) (2025-01-14T03:59:48Z) - What do Large Language Models Need for Machine Translation Evaluation? [12.42394213466485]
大規模言語モデル(LLM)は、微調整された多言語事前訓練言語モデルに匹敵する結果が得られる。
本稿では,LLMの機械翻訳品質を評価するために,ソース,参照,翻訳エラー,ガイドラインなどの翻訳情報が必要であるかを検討する。
論文 参考訳(メタデータ) (2024-10-04T09:50:45Z) - Towards Fast Multilingual LLM Inference: Speculative Decoding and Specialized Drafters [21.19251212483406]
大規模言語モデル(LLM)は自然言語処理に革命をもたらし、様々な商用アプリケーションに応用範囲を広げている。
本稿では,投機的復号化における補助モデルのトレーニング手法について検討し,将来のトークンを目標LLMで検証する。
言語固有のドラフトモデルは,対象とする事前訓練とファイントゥン戦略によって最適化され,従来の手法に比べて推論時間を大幅に短縮することを示す。
論文 参考訳(メタデータ) (2024-06-24T16:06:50Z) - Verbalized Machine Learning: Revisiting Machine Learning with Language Models [63.10391314749408]
言語化機械学習(VML)の枠組みを紹介する。
VMLはパラメータ空間を人間の解釈可能な自然言語に制限する。
我々は,VMLの有効性を実証的に検証し,VMLがより強力な解釈可能性を実現するためのステップストーンとして機能することを期待する。
論文 参考訳(メタデータ) (2024-06-06T17:59:56Z) - SLMRec: Distilling Large Language Models into Small for Sequential Recommendation [38.51895517016953]
シーケンシャルレコメンデーションタスクでは、過去のインタラクションを考慮して、ユーザが対話する可能性のある次の項目を予測する。
最近の研究は、LCMがシーケンシャルレコメンデーションシステムに与える影響を実証している。
LLM の巨大なサイズのため、現実のプラットフォームに LLM ベースのモデルを適用するのは非効率で実用的ではない。
論文 参考訳(メタデータ) (2024-05-28T07:12:06Z) - LLM-augmented Preference Learning from Natural Language [19.700169351688768]
大規模言語モデル(LLM)は、より大きな文脈長を扱う。
LLM は、ターゲットテキストが大きければ SotA を一貫して上回る。
ゼロショット学習よりもパフォーマンスが向上する。
論文 参考訳(メタデータ) (2023-10-12T17:17:27Z) - Time-LLM: Time Series Forecasting by Reprogramming Large Language Models [110.20279343734548]
時系列予測は多くの実世界の力学系において重要な意味を持つ。
時系列予測のための大規模言語モデルを再利用するための再プログラミングフレームワークであるTime-LLMを提案する。
Time-LLMは、最先端の特殊な予測モデルよりも優れた、強力な時系列学習者である。
論文 参考訳(メタデータ) (2023-10-03T01:31:25Z) - Self-Checker: Plug-and-Play Modules for Fact-Checking with Large Language Models [75.75038268227554]
Self-Checkerはファクトチェックを容易にするプラグインとプレイモジュールからなるフレームワークである。
このフレームワークは、低リソース環境でファクトチェックシステムを構築するための、高速で効率的な方法を提供する。
論文 参考訳(メタデータ) (2023-05-24T01:46:07Z) - Check Your Facts and Try Again: Improving Large Language Models with
External Knowledge and Automated Feedback [127.75419038610455]
大規模言語モデル(LLM)は、ダウンストリームタスクの多くに対して、人間のような、流動的な応答を生成することができる。
本稿では,プラグ・アンド・プレイモジュールのセットでブラックボックスのLSMを増強するLSM-Augmenterシステムを提案する。
論文 参考訳(メタデータ) (2023-02-24T18:48:43Z) - Large Language Models Are Latent Variable Models: Explaining and Finding
Good Demonstrations for In-Context Learning [104.58874584354787]
近年,事前学習型大規模言語モデル (LLM) は,インコンテキスト学習(in-context learning)として知られる推論時少数ショット学習能力を実現する上で,顕著な効率性を示している。
本研究では,現実のLLMを潜在変数モデルとみなし,ベイズレンズによる文脈内学習現象を考察することを目的とする。
論文 参考訳(メタデータ) (2023-01-27T18:59:01Z) - Validating Large Language Models with ReLM [11.552979853457117]
大規模言語モデル(LLM)は、自然に聞こえるテキストを生成する能力があるとして、高く評価されている。
データ記憶、バイアス、不適切な言語など、LLMのネガティブな影響に関する懸念が高まっている。
本稿では,標準正規表現を用いたLLMの検証・クエリシステムであるReLMを紹介する。
論文 参考訳(メタデータ) (2022-11-21T21:40:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。