論文の概要: TimeCapsule: Solving the Jigsaw Puzzle of Long-Term Time Series Forecasting with Compressed Predictive Representations
- arxiv url: http://arxiv.org/abs/2504.12721v1
- Date: Thu, 17 Apr 2025 07:54:26 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-18 14:38:01.101422
- Title: TimeCapsule: Solving the Jigsaw Puzzle of Long-Term Time Series Forecasting with Compressed Predictive Representations
- Title(参考訳): TimeCapsule: 圧縮予測表現による長期時系列予測のJigsawパズルの解決
- Authors: Yihang Lu, Yangyang Xu, Qitao Qing, Xianwei Meng,
- Abstract要約: 我々は高次元情報圧縮の原理に基づいたモデルであるTimeCapsuleを紹介する。
本稿では,圧縮表現領域の内部予測について提案する。
- 参考スコア(独自算出の注目度): 13.691725113410856
- License:
- Abstract: Recent deep learning models for Long-term Time Series Forecasting (LTSF) often emphasize complex, handcrafted designs, while simpler architectures like linear models or MLPs have often outperformed these intricate solutions. In this paper, we revisit and organize the core ideas behind several key techniques, such as redundancy reduction and multi-scale modeling, which are frequently employed in advanced LTSF models. Our goal is to streamline these ideas for more efficient deep learning utilization. To this end, we introduce TimeCapsule, a model built around the principle of high-dimensional information compression that unifies these techniques in a generalized yet simplified framework. Specifically, we model time series as a 3D tensor, incorporating temporal, variate, and level dimensions, and leverage mode production to capture multi-mode dependencies while achieving dimensionality compression. We propose an internal forecast within the compressed representation domain, supported by the Joint-Embedding Predictive Architecture (JEPA), to monitor the learning of predictive representations. Extensive experiments on challenging benchmarks demonstrate the versatility of our method, showing that TimeCapsule can achieve state-of-the-art performance.
- Abstract(参考訳): 近年のLTSF(Long-term Time Series Forecasting)のディープラーニングモデルは複雑で手作りのデザインに重点を置いていることが多いが、線形モデルやMLPのような単純なアーキテクチャは複雑なソリューションよりも優れていることが多い。
本稿では,先進LTSFモデルによく用いられる冗長性低減やマルチスケールモデリングなど,いくつかの重要な技術の背後にある中核的アイデアを再検討し,整理する。
私たちの目標は、これらのアイデアをより効率的なディープラーニング利用のために合理化することにあります。
この目的のために,高次元情報圧縮の原理に基づいて構築されたTimeCapsuleを導入する。
具体的には、時系列を3次元テンソルとしてモデル化し、時間的、変動的、およびレベル次元を取り入れ、モード生成を活用し、次元圧縮を行いながら多モード依存を捕捉する。
本稿では,JEPA(Joint-Embedding Predictive Architecture)が支援する圧縮表現領域の内部予測を提案し,予測表現の学習を監視する。
試行錯誤試験の結果,TimeCapsule が最先端の性能を達成できることが判明した。
関連論文リスト
- Exploring the Role of Explicit Temporal Modeling in Multimodal Large Language Models for Video Understanding [23.477954901326978]
既存のアプローチでは、デコーダのみに依存する暗黙の時間的モデリングと、補助的な時間的エンコーダを使用する明示的な時間的モデリングが採用されている。
適応性のある時間場とトークン圧縮比を持つフレキシブルな時間的モデリングを実現するための明示的時空間(STE)を提案する。
本研究は、ビデオMLLMの進行に有効な洞察を提供する、明示的な時間的モデリングの重要な役割を強調した。
論文 参考訳(メタデータ) (2025-01-28T08:30:58Z) - Enhancing Foundation Models for Time Series Forecasting via Wavelet-based Tokenization [74.3339999119713]
我々はウェーブレットベースのトークンーザを開発し、時間局所化周波数の空間でモデルが複雑な表現を直接学習できるようにする。
提案手法は,まず入力時系列をスケール・分解し,次に閾値を設定し,ウェーブレット係数を定量化し,最後に予測水平方向の係数を予測する自己回帰モデルを事前学習する。
論文 参考訳(メタデータ) (2024-12-06T18:22:59Z) - Temporal Feature Matters: A Framework for Diffusion Model Quantization [105.3033493564844]
拡散モデルはマルチラウンド・デノナイジングの時間ステップに依存している。
3つの戦略を含む新しい量子化フレームワークを導入する。
このフレームワークは時間情報のほとんどを保存し、高品質なエンドツーエンド生成を保証する。
論文 参考訳(メタデータ) (2024-07-28T17:46:15Z) - ConvTimeNet: A Deep Hierarchical Fully Convolutional Model for Multivariate Time Series Analysis [7.979501926410114]
ConvTimeNetは時系列解析のために設計された階層的な純粋な畳み込みモデルである。
データ駆動方式で時間依存の基本単位の局所パターンを適応的に知覚する。
大規模なカーネル機構を使用して、畳み込みブロックが深く積み重ねられるようにする。
論文 参考訳(メタデータ) (2024-03-03T12:05:49Z) - PDETime: Rethinking Long-Term Multivariate Time Series Forecasting from
the perspective of partial differential equations [49.80959046861793]
本稿では,ニューラルPDEソルバの原理に着想を得た新しいLMTFモデルであるPDETimeを提案する。
7つの異なる時間的実世界のLMTFデータセットを用いた実験により、PDETimeがデータ固有の性質に効果的に適応できることが判明した。
論文 参考訳(メタデータ) (2024-02-25T17:39:44Z) - Timer: Generative Pre-trained Transformers Are Large Time Series Models [83.03091523806668]
本稿では,大規模時系列モデル(LTSM)の早期開発を目的とした。
事前トレーニング中に、最大10億のタイムポイントを持つ大規模なデータセットをキュレートします。
多様なアプリケーションのニーズを満たすため,予測,計算,時系列の異常検出を統一的な生成タスクに変換する。
論文 参考訳(メタデータ) (2024-02-04T06:55:55Z) - TFMQ-DM: Temporal Feature Maintenance Quantization for Diffusion Models [52.454274602380124]
拡散モデルは非常に時間ステップ$t$に大きく依存し、良好なマルチラウンドデノジングを実現している。
本稿では,時間情報ブロック上に構築した時間的特徴保守量子化(TFMQ)フレームワークを提案する。
先駆的なブロック設計により、時間情報認識再構成(TIAR)と有限集合キャリブレーション(FSC)を考案し、完全な時間的特徴を整列させる。
論文 参考訳(メタデータ) (2023-11-27T12:59:52Z) - GPT-ST: Generative Pre-Training of Spatio-Temporal Graph Neural Networks [24.323017830938394]
この作業は、ベースラインとシームレスに統合し、パフォーマンスを向上する事前トレーニングフレームワークを導入することで、課題に対処することを目的としている。
フレームワークは2つの重要な設計に基づいて構築されている。
Apple-to-appleマスクオートエンコーダは、学習時間依存のための事前トレーニングモデルである。
これらのモジュールは、時間内カスタマイズされた表現とセマンティック・クラスタ間関係を捉えるように設計されている。
論文 参考訳(メタデータ) (2023-11-07T02:36:24Z) - Time-LLM: Time Series Forecasting by Reprogramming Large Language Models [110.20279343734548]
時系列予測は多くの実世界の力学系において重要な意味を持つ。
時系列予測のための大規模言語モデルを再利用するための再プログラミングフレームワークであるTime-LLMを提案する。
Time-LLMは、最先端の特殊な予測モデルよりも優れた、強力な時系列学習者である。
論文 参考訳(メタデータ) (2023-10-03T01:31:25Z) - SOM-CPC: Unsupervised Contrastive Learning with Self-Organizing Maps for
Structured Representations of High-Rate Time Series [23.074319429090092]
我々は,高次元情報を保存しながら,組織化された2次元多様体内のデータを可視化するモデルSOM-CPCを提案する。
我々は,SOM-CPCがDLベースの特徴抽出のような強力なベースラインよりも優れている,合成データと実生活データ(生理データとオーディオ記録)の両方について示す。
論文 参考訳(メタデータ) (2022-05-31T15:21:21Z) - Numerical Weather Forecasting using Convolutional-LSTM with Attention
and Context Matcher Mechanisms [10.759556555869798]
本稿では,高解像度気象データを予測するための新しいディープラーニングアーキテクチャを提案する。
我々の気象モデルは,ベースラインの深層学習モデルと比較して,大幅な性能向上を実現している。
論文 参考訳(メタデータ) (2021-02-01T08:30:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。