論文の概要: Are AI agents the new machine translation frontier? Challenges and opportunities of single- and multi-agent systems for multilingual digital communication
- arxiv url: http://arxiv.org/abs/2504.12891v1
- Date: Thu, 17 Apr 2025 12:32:18 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-18 14:38:31.573448
- Title: Are AI agents the new machine translation frontier? Challenges and opportunities of single- and multi-agent systems for multilingual digital communication
- Title(参考訳): AIエージェントは新しい機械翻訳フロンティアか?多言語デジタルコミュニケーションのための単一エージェントシステムとマルチエージェントシステムの課題と機会
- Authors: Vicent Briva-Iglesias,
- Abstract要約: 本稿では,機械翻訳システム(MT)におけるシングルエージェントとマルチエージェントシステムの可能性について述べる。
MTにおけるマルチエージェントの実現可能性を示すため,法的なMTのパイロット研究を行っている。
以上の結果から,マルチエージェントシステムはドメイン適応性とコンテキスト認識を大幅に改善する可能性が示唆された。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: The rapid evolution of artificial intelligence (AI) has introduced AI agents as a disruptive paradigm across various industries, yet their application in machine translation (MT) remains underexplored. This paper describes and analyses the potential of single- and multi-agent systems for MT, reflecting on how they could enhance multilingual digital communication. While single-agent systems are well-suited for simpler translation tasks, multi-agent systems, which involve multiple specialized AI agents collaborating in a structured manner, may offer a promising solution for complex scenarios requiring high accuracy, domain-specific knowledge, and contextual awareness. To demonstrate the feasibility of multi-agent workflows in MT, we are conducting a pilot study in legal MT. The study employs a multi-agent system involving four specialized AI agents for (i) translation, (ii) adequacy review, (iii) fluency review, and (iv) final editing. Our findings suggest that multi-agent systems may have the potential to significantly improve domain-adaptability and contextual awareness, with superior translation quality to traditional MT or single-agent systems. This paper also sets the stage for future research into multi-agent applications in MT, integration into professional translation workflows, and shares a demo of the system analyzed in the paper.
- Abstract(参考訳): 人工知能(AI)の急速な進化は、さまざまな産業における破壊的なパラダイムとしてAIエージェントを導入したが、機械翻訳(MT)への応用はいまだ未定である。
本稿では,MTにおける単一エージェントとマルチエージェントシステムの可能性について述べる。
単一エージェントシステムは単純な翻訳作業に適しているが、複数の専門AIエージェントが構造化された方法で協力するマルチエージェントシステムは、高い精度、ドメイン固有の知識、コンテキスト認識を必要とする複雑なシナリオに対して有望なソリューションを提供するかもしれない。
MTにおけるマルチエージェントワークフローの実現可能性を示すため、法的なMTでパイロット研究を行っている。本研究では、4つの専門的AIエージェントを含むマルチエージェントシステムを採用している。
(i)翻訳
(二)妥当性審査
(三)流布審査、及び
(4)最終編集。
以上の結果から,マルチエージェントシステムはドメイン適応性と文脈認識を大幅に向上させる可能性があり,従来のMTシステムや単一エージェントシステムよりも翻訳品質が高い可能性が示唆された。
本稿では、MTにおけるマルチエージェントアプリケーションの研究、専門的な翻訳ワークフローへの統合、および論文で分析されたシステムのデモを共有するためのステージも設定する。
関連論文リスト
- (Perhaps) Beyond Human Translation: Harnessing Multi-Agent Collaboration for Translating Ultra-Long Literary Texts [52.18246881218829]
本稿では,大言語モデル(LLM)をベースとした多エージェントフレームワークを,TransAgentsという企業として実装した。
本システムの有効性を評価するため,モノリンガル・ヒューマン・プライス(MHP)とバイリンガル・LLM・プライス(BLP)の2つの革新的な評価戦略を提案する。
論文 参考訳(メタデータ) (2024-05-20T05:55:08Z) - Exploring Autonomous Agents through the Lens of Large Language Models: A Review [0.0]
大規模言語モデル(LLM)は人工知能を変革し、自律エージェントがさまざまなドメインで多様なタスクを実行できるようにしている。
彼らは多目的性、人的価値のアライメント、幻覚、評価といった課題に直面している。
AgentBench、WebArena、ToolLLMといった評価プラットフォームは、複雑なシナリオでこれらのエージェントを評価する堅牢な方法を提供します。
論文 参考訳(メタデータ) (2024-04-05T22:59:02Z) - LVLM-Interpret: An Interpretability Tool for Large Vision-Language Models [50.259006481656094]
本稿では,大規模視覚言語モデルの内部メカニズムの理解を目的とした対話型アプリケーションを提案する。
このインタフェースは, 画像パッチの解釈可能性を高めるために設計されており, 応答の生成に有効である。
本稿では,一般的な大規模マルチモーダルモデルであるLLaVAにおける障害機構の理解に,アプリケーションがどのように役立つかのケーススタディを示す。
論文 参考訳(メタデータ) (2024-04-03T23:57:34Z) - A Survey on Context-Aware Multi-Agent Systems: Techniques, Challenges and Future Directions [1.0488897291370285]
自律型エージェントに対する研究の関心が高まっている。
課題は、これらのエージェントが動的環境における不確実性を学び、推論し、ナビゲートできるようにすることである。
コンテキスト認識は、マルチエージェントシステムの強化において重要な要素として現れる。
論文 参考訳(メタデータ) (2024-02-03T00:27:22Z) - SpeechAgents: Human-Communication Simulation with Multi-Modal
Multi-Agent Systems [53.94772445896213]
大規模言語モデル(LLM)に基づくマルチエージェントシステムは,人間の社会をシミュレートする上で有望な性能を示した。
本研究では,マルチモーダルLLMに基づくマルチエージェントシステムであるSpeechAgentsを提案する。
論文 参考訳(メタデータ) (2024-01-08T15:01:08Z) - Exploring Large Language Model based Intelligent Agents: Definitions,
Methods, and Prospects [32.91556128291915]
本稿では, シングルエージェントおよびマルチエージェントシステムにおける知的エージェントの詳細な概要を提供するため, 現在の研究状況について調査する。
定義、研究フレームワーク、その構成、認知と計画方法、ツール利用、環境フィードバックに対する反応などの基礎的な構成要素を網羅する。
我々は、AIと自然言語処理の進化の展望を考慮し、LLMベースのエージェントの展望を思い浮かべて結論付ける。
論文 参考訳(メタデータ) (2024-01-07T09:08:24Z) - On the Discussion of Large Language Models: Symmetry of Agents and
Interplay with Prompts [51.3324922038486]
本稿では,プロンプトの相互作用と議論機構の実証結果について報告する。
また、コンピュートとマージに基づくスケーラブルな議論機構も提案している。
論文 参考訳(メタデータ) (2023-11-13T04:56:48Z) - Responsible Emergent Multi-Agent Behavior [2.9370710299422607]
Responsible AIの最先端技術は、人間の問題はマルチエージェントの問題である、という重要なポイントを無視した。
交通の運転から経済政策の交渉まで、人間の問題解決には複数の個人の行動と動機の相互作用と相互作用が伴う。
この論文は、責任ある創発的マルチエージェント行動の研究を発展させる。
論文 参考訳(メタデータ) (2023-11-02T21:37:32Z) - Translation-Enhanced Multilingual Text-to-Image Generation [61.41730893884428]
テキスト・ツー・イメージ・ジェネレーション(TTI)の研究は、現在でも主に英語に焦点を当てている。
そこで本研究では,多言語TTIとニューラルマシン翻訳(NMT)のブートストラップmTTIシステムへの応用について検討する。
我々は,mTTIフレームワーク内で多言語テキスト知識を重み付け,統合する新しいパラメータ効率アプローチであるEnsemble Adapter (EnsAd)を提案する。
論文 参考訳(メタデータ) (2023-05-30T17:03:52Z) - Exploring Human-Like Translation Strategy with Large Language Models [93.49333173279508]
大規模言語モデル(LLM)は、一般的なシナリオにおいて印象的な機能を示している。
本研究は,マルチアスペクト・プロンプトと選択のためのMAPSフレームワークを提案する。
品質推定に基づく選択機構を用いて,ノイズや不ヘッピーな知識を抽出する。
論文 参考訳(メタデータ) (2023-05-06T19:03:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。