ICAS: IP Adapter and ControlNet-based Attention Structure for Multi-Subject Style Transfer Optimization
- URL: http://arxiv.org/abs/2504.13224v1
- Date: Thu, 17 Apr 2025 10:48:11 GMT
- Title: ICAS: IP Adapter and ControlNet-based Attention Structure for Multi-Subject Style Transfer Optimization
- Authors: Fuwei Liu,
- Abstract summary: ICAS is a novel framework for efficient and controllable multi-subject style transfer.<n>Our framework ensures faithful global layout preservation alongside accurate local style synthesis.<n>ICAS achieves superior performance in structure preservation, style consistency, and inference efficiency.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Generating multi-subject stylized images remains a significant challenge due to the ambiguity in defining style attributes (e.g., color, texture, atmosphere, and structure) and the difficulty in consistently applying them across multiple subjects. Although recent diffusion-based text-to-image models have achieved remarkable progress, existing methods typically rely on computationally expensive inversion procedures or large-scale stylized datasets. Moreover, these methods often struggle with maintaining multi-subject semantic fidelity and are limited by high inference costs. To address these limitations, we propose ICAS (IP-Adapter and ControlNet-based Attention Structure), a novel framework for efficient and controllable multi-subject style transfer. Instead of full-model tuning, ICAS adaptively fine-tunes only the content injection branch of a pre-trained diffusion model, thereby preserving identity-specific semantics while enhancing style controllability. By combining IP-Adapter for adaptive style injection with ControlNet for structural conditioning, our framework ensures faithful global layout preservation alongside accurate local style synthesis. Furthermore, ICAS introduces a cyclic multi-subject content embedding mechanism, which enables effective style transfer under limited-data settings without the need for extensive stylized corpora. Extensive experiments show that ICAS achieves superior performance in structure preservation, style consistency, and inference efficiency, establishing a new paradigm for multi-subject style transfer in real-world applications.
Related papers
- DMSC: Dynamic Multi-Scale Coordination Framework for Time Series Forecasting [14.176801586961286]
Time Series Forecasting (TSF) faces persistent challenges in modeling intricate temporal dependencies across different scales.<n>We propose a novel Dynamic Multi-Scale Coordination Framework (DMSC) with Multi-Scale Patch Decomposition block (EMPD), Triad Interaction Block (TIB) and Adaptive Scale Routing MoE block (ASR-MoE)<n>EMPD is designed as a built-in component to dynamically segment sequences into hierarchical patches with exponentially scaled granularities.<n>TIB then jointly models intra-patch, inter-patch, and cross-variable dependencies within each layer's decomposed representations.
arXiv Detail & Related papers (2025-08-03T13:11:52Z) - Local Prompt Adaptation for Style-Consistent Multi-Object Generation in Diffusion Models [0.0]
We propose a simple, training-free architectural method called Local Prompt Adaptation (LPA)<n>Our method decomposes the prompt into content and style tokens, and injects them selectively into the U-Net's attention layers at different stages.<n>We evaluate our method on a custom benchmark of 50 style-rich prompts across five categories and compare against strong baselines including Composer, MultiDiffusion, Attend-and-Excite, LoRA, and SDXL.
arXiv Detail & Related papers (2025-07-27T01:32:13Z) - Structural Similarity-Inspired Unfolding for Lightweight Image Super-Resolution [88.20464308588889]
We propose a Structural Similarity-Inspired Unfolding (SSIU) method for efficient image SR.<n>This method is designed through unfolding an SR optimization function constrained by structural similarity.<n>Our model outperforms current state-of-the-art models, boasting lower parameter counts and reduced memory consumption.
arXiv Detail & Related papers (2025-06-13T14:29:40Z) - AttenST: A Training-Free Attention-Driven Style Transfer Framework with Pre-Trained Diffusion Models [4.364797586362505]
AttenST is a training-free attention-driven style transfer framework.<n>We propose a style-guided self-attention mechanism that conditions self-attention on the reference style.<n>We also introduce a dual-feature cross-attention mechanism to fuse content and style features.
arXiv Detail & Related papers (2025-03-10T13:28:36Z) - Autonomous Structural Memory Manipulation for Large Language Models Using Hierarchical Embedding Augmentation [0.0]
This study introduces hierarchical embedding augmentation as a means to redefine the representation of tokens through multi-level semantic structures.
Results reveal substantial improvements in computational efficiency, with marked reductions in processing overhead for longer input sequences.
The ability to dynamically adjust token representations and memory configurations contributed to the model's robustness under varied and unpredictable input conditions.
arXiv Detail & Related papers (2025-01-23T22:20:36Z) - StyleRWKV: High-Quality and High-Efficiency Style Transfer with RWKV-like Architecture [29.178246094092202]
Style transfer aims to generate a new image preserving the content but with the artistic representation of the style source.<n>Most of the existing methods are based on Transformers or diffusion models, however, they suffer from quadratic computational complexity and high inference time.<n>We present a novel framework StyleRWKV, to achieve high-quality style transfer with limited memory usage and linear time complexity.
arXiv Detail & Related papers (2024-12-27T09:01:15Z) - Style-Pro: Style-Guided Prompt Learning for Generalizable Vision-Language Models [5.492174268132387]
Style-Pro is a novel prompt learning framework that mitigates overfitting and preserves the zero-shot generalization capabilities of CLIP.
Style-Pro consistently surpasses state-of-the-art methods in various settings, including base-to-new generalization, cross-dataset transfer, and domain generalization.
arXiv Detail & Related papers (2024-11-25T00:20:53Z) - StyDeSty: Min-Max Stylization and Destylization for Single Domain Generalization [85.18995948334592]
Single domain generalization (single DG) aims at learning a robust model generalizable to unseen domains from only one training domain.
State-of-the-art approaches have mostly relied on data augmentations, such as adversarial perturbation and style enhancement, to synthesize new data.
We propose emphStyDeSty, which explicitly accounts for the alignment of the source and pseudo domains in the process of data augmentation.
arXiv Detail & Related papers (2024-06-01T02:41:34Z) - ArtWeaver: Advanced Dynamic Style Integration via Diffusion Model [73.95608242322949]
Stylized Text-to-Image Generation (STIG) aims to generate images from text prompts and style reference images.
We present ArtWeaver, a novel framework that leverages pretrained Stable Diffusion to address challenges such as misinterpreted styles and inconsistent semantics.
arXiv Detail & Related papers (2024-05-24T07:19:40Z) - Unleashing Network Potentials for Semantic Scene Completion [50.95486458217653]
This paper proposes a novel SSC framework - Adrial Modality Modulation Network (AMMNet)
AMMNet introduces two core modules: a cross-modal modulation enabling the interdependence of gradient flows between modalities, and a customized adversarial training scheme leveraging dynamic gradient competition.
Extensive experimental results demonstrate that AMMNet outperforms state-of-the-art SSC methods by a large margin.
arXiv Detail & Related papers (2024-03-12T11:48:49Z) - HCVP: Leveraging Hierarchical Contrastive Visual Prompt for Domain
Generalization [69.33162366130887]
Domain Generalization (DG) endeavors to create machine learning models that excel in unseen scenarios by learning invariant features.
We introduce a novel method designed to supplement the model with domain-level and task-specific characteristics.
This approach aims to guide the model in more effectively separating invariant features from specific characteristics, thereby boosting the generalization.
arXiv Detail & Related papers (2024-01-18T04:23:21Z) - HiCAST: Highly Customized Arbitrary Style Transfer with Adapter Enhanced
Diffusion Models [84.12784265734238]
The goal of Arbitrary Style Transfer (AST) is injecting the artistic features of a style reference into a given image/video.
We propose HiCAST, which is capable of explicitly customizing the stylization results according to various source of semantic clues.
A novel learning objective is leveraged for video diffusion model training, which significantly improve cross-frame temporal consistency.
arXiv Detail & Related papers (2024-01-11T12:26:23Z) - Semantic Image Synthesis via Class-Adaptive Cross-Attention [7.147779225315707]
Cross-attention layers are used in place of SPADE for learning shape-style correlations and so conditioning the image generation process.
Our model inherits the versatility of SPADE, at the same time obtaining state-of-the-art generation quality, as well as improved global and local style transfer.
arXiv Detail & Related papers (2023-08-30T14:49:34Z) - TSIT: A Simple and Versatile Framework for Image-to-Image Translation [103.92203013154403]
We introduce a simple and versatile framework for image-to-image translation.
We provide a carefully designed two-stream generative model with newly proposed feature transformations.
This allows multi-scale semantic structure information and style representation to be effectively captured and fused by the network.
A systematic study compares the proposed method with several state-of-the-art task-specific baselines, verifying its effectiveness in both perceptual quality and quantitative evaluations.
arXiv Detail & Related papers (2020-07-23T15:34:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.