論文の概要: Using Machine Learning and Neural Networks to Analyze and Predict Chaos in Multi-Pendulum and Chaotic Systems
- arxiv url: http://arxiv.org/abs/2504.13453v1
- Date: Fri, 18 Apr 2025 04:12:14 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-28 19:15:54.842873
- Title: Using Machine Learning and Neural Networks to Analyze and Predict Chaos in Multi-Pendulum and Chaotic Systems
- Title(参考訳): 機械学習とニューラルネットワークを用いたマルチペンデュラムおよびカオスシステムにおけるカオスの解析と予測
- Authors: Vasista Ramachandruni, Sai Hruday Reddy Nara, Geo Lalu, Sabrina Yang, Mohit Ramesh Kumar, Aarjav Jain, Pratham Mehta, Hankyu Koo, Jason Damonte, Marx Akl,
- Abstract要約: カオスシステムは現在、気象パターンや病気の発生、金融市場など、世界中で普及している。
我々は、これらのシステムのうちの1つであるマルチ振り子を予測するために、10種類の異なる機械学習モデルとニューラルネットワークを評価した。
- 参考スコア(独自算出の注目度): 0.24548437381817975
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: A chaotic system is a highly volatile system characterized by its sensitive dependence on initial conditions and outside factors. Chaotic systems are prevalent throughout the world today: in weather patterns, disease outbreaks, and even financial markets. Chaotic systems are seen in every field of science and humanities, so being able to predict these systems is greatly beneficial to society. In this study, we evaluate 10 different machine learning models and neural networks [1] based on Root Mean Squared Error (RMSE) and R^2 values for their ability to predict one of these systems, the multi-pendulum. We begin by generating synthetic data representing the angles of the pendulum over time using the Runge Kutta Method for solving 4th Order Differential Equations (ODE-RK4) [2]. At first, we used the single-step sliding window approach, predicting the 50st step after training for steps 0-49 and so forth. However, to more accurately cover chaotic motion and behavior in these systems, we transitioned to a time-step based approach. Here, we trained the model/network on many initial angles and tested it on a completely new set of initial angles, or 'in-between' to capture chaotic motion to its fullest extent. We also evaluated the stability of the system using Lyapunov exponents. We concluded that for a double pendulum, the best model was the Long Short Term Memory Network (LSTM)[3] for the sliding window and time step approaches in both friction and frictionless scenarios. For triple pendulum, the Vanilla Recurrent Neural Network (VRNN)[4] was the best for the sliding window and Gated Recurrent Network (GRU) [5] was the best for the time step approach, but for friction, LSTM was the best.
- Abstract(参考訳): カオスシステム(Chaotic system)は、初期条件や外部要因への敏感な依存を特徴とする、非常に揮発性の高いシステムである。
カオスシステムは現在、気象パターンや病気の発生、金融市場など、世界中で普及している。
カオスシステムは科学や人文科学のあらゆる分野に見られるので、これらのシステムを予測することは社会にとって非常に有益である。
本研究では、これらのシステムのうちの1つであるマルチ振り子を予測する能力について、Root Mean Squared Error(RMSE)とR^2値に基づいて、10種類の機械学習モデルとニューラルネットワーク [1] を評価した。
まず,第4次微分方程式(ODE-RK4)の解法であるRunge Kutta法を用いて,振り子の角度を表す合成データを生成する。
最初は1ステップスライディングウインドウを用いて,0~49ステップのトレーニング後の50ステップを予測した。
しかし,これらのシステムでは,カオス的な動きや振る舞いをより正確にカバーするために,時間ステップに基づくアプローチに移行した。
ここでは、モデル/ネットワークを多くの初期角度で訓練し、完全に新しい初期角度のセットでテストした。
また,リアプノフ指数を用いたシステムの安定性についても検討した。
我々は、二重振り子の場合、摩擦と摩擦のないシナリオの両方において、スライディングウィンドウとタイムステップアプローチのためのLong Short Term Memory Network(LSTM)[3]が最適であると結論付けた。
トリプル振り子では、Vanilla Recurrent Neural Network(VRNN)[4]がスライディングウィンドウに、Gated Recurrent Network(GRU)[5]がタイムステップアプローチに最適でしたが、摩擦ではLSTMがベストでした。
関連論文リスト
- Learning Physics From Video: Unsupervised Physical Parameter Estimation for Continuous Dynamical Systems [49.11170948406405]
本研究では,単一のビデオから既知の連続制御方程式の物理パラメータを推定する教師なし手法を提案する。
Delfys75は5種類の動的システムのための75本のビデオからなる実世界のデータセットだ。
論文 参考訳(メタデータ) (2024-10-02T09:44:54Z) - Divide And Conquer: Learning Chaotic Dynamical Systems With Multistep Penalty Neural Ordinary Differential Equations [0.0]
多段階ペナルティ・ヌードは, 倉本・シヴァシュ・コリンスキー方程式, 2次元コルモゴロフ流, ERA5再解析データなどのカオスシステムに適用される。
計算コストを著しく低減したカオスシステムに対してMPODEが実行可能な性能を提供することが観察された。
論文 参考訳(メタデータ) (2024-06-30T02:50:28Z) - Zero-shot Imputation with Foundation Inference Models for Dynamical Systems [5.549794481031468]
我々は,ODEによって決定されると仮定される時系列データの欠落を補うという古典的な問題に対して,新たな視点を提供する。
本稿では,いくつかの(隠れた)ODEを満たすパラメトリック関数を通じて,ゼロショット時系列計算のための新しい教師付き学習フレームワークを提案する。
我々は,1と同一(事前学習)の認識モデルが,63個の異なる時系列に対してゼロショット計算を行なえることを実証的に実証した。
論文 参考訳(メタデータ) (2024-02-12T11:48:54Z) - TANGO: Time-Reversal Latent GraphODE for Multi-Agent Dynamical Systems [43.39754726042369]
連続グラフニューラルネットワークに基づく常微分方程式(GraphODE)により予測される前後の軌跡を整列するソフト制約として,単純かつ効果的な自己監督型正規化項を提案する。
時間反転対称性を効果的に課し、古典力学の下でより広い範囲の力学系にわたってより正確なモデル予測を可能にする。
様々な物理システムに対する実験結果から,提案手法の有効性が示された。
論文 参考訳(メタデータ) (2023-10-10T08:52:16Z) - Machine learning in and out of equilibrium [58.88325379746631]
我々の研究は、統計物理学から適応したフォッカー・プランク法を用いて、これらの平行線を探索する。
我々は特に、従来のSGDでは平衡が切れている長期的限界におけるシステムの定常状態に焦点を当てる。
本稿では,ミニバッチの置き換えを伴わない新しいランゲヴィンダイナミクス(SGLD)を提案する。
論文 参考訳(メタデータ) (2023-06-06T09:12:49Z) - How neural networks learn to classify chaotic time series [77.34726150561087]
本研究では,通常の逆カオス時系列を分類するために訓練されたニューラルネットワークの内部動作について検討する。
入力周期性とアクティベーション周期の関係は,LKCNNモデルの性能向上の鍵となる。
論文 参考訳(メタデータ) (2023-06-04T08:53:27Z) - Neural Lyapunov Control for Discrete-Time Systems [30.135651803114307]
一般的なアプローチは、リャプノフ関数と関連する制御ポリシーの組み合わせを計算することである。
ニューラルネットワークを用いてリアプノフ関数を表現するいくつかの手法が提案されている。
離散時間系におけるニューラルリアプノフ制御の学習のための最初のアプローチを提案する。
論文 参考訳(メタデータ) (2023-05-11T03:28:20Z) - Learning Neural Constitutive Laws From Motion Observations for
Generalizable PDE Dynamics [97.38308257547186]
多くのNNアプローチは、支配的PDEと物質モデルの両方を暗黙的にモデル化するエンドツーエンドモデルを学ぶ。
PDEの管理はよく知られており、学習よりも明示的に実施されるべきである、と私たちは主張する。
そこで我々は,ネットワークアーキテクチャを利用したニューラル構成則(Neural Constitutive Laws,NCLaw)と呼ばれる新しいフレームワークを導入する。
論文 参考訳(メタデータ) (2023-04-27T17:42:24Z) - Losing momentum in continuous-time stochastic optimisation [42.617042045455506]
運動量に基づく最適化アルゴリズムは 特に広まりました
本研究では、運動量を伴う勾配降下の連続時間モデルを解析する。
また、画像分類問題において畳み込みニューラルネットワークを訓練する。
論文 参考訳(メタデータ) (2022-09-08T10:46:05Z) - Predicting the Stability of Hierarchical Triple Systems with
Convolutional Neural Networks [68.8204255655161]
本稿では,階層型三重項の安定性を予測する畳み込みニューラルネットワークモデルを提案する。
すべてのトレーニングされたモデルは公開されており、純粋な$N$-bodyメソッドよりも200ドルの速さで階層的な3重システムの安定性を予測することができる。
論文 参考訳(メタデータ) (2022-06-24T17:58:13Z) - Discovering dynamical features of Hodgkin-Huxley-type model of
physiological neuron using artificial neural network [0.0]
2つの高速かつ1つの遅い変数を持つHodgkin-Huxley型システムを考える。
これら2つのシステムでは、そのダイナミクスを再現できる人工ニューラルネットワークを作成します。
ビスタブルモデルでは、トレーニング中に見ずに、あるソリューションのブランチでのみトレーニングされたネットワークが、別のネットワークを回復することを意味する。
論文 参考訳(メタデータ) (2022-03-26T19:04:19Z) - Message Passing Neural PDE Solvers [60.77761603258397]
我々は、バックプロップ最適化されたニューラル関数近似器で、グラフのアリーデザインのコンポーネントを置き換えるニューラルメッセージパッシング解決器を構築した。
本稿では, 有限差分, 有限体積, WENOスキームなどの古典的手法を表現的に含んでいることを示す。
本研究では, 異なる領域のトポロジ, 方程式パラメータ, 離散化などにおける高速, 安定, 高精度な性能を, 1次元, 2次元で検証する。
論文 参考訳(メタデータ) (2022-02-07T17:47:46Z) - Liquid Time-constant Networks [117.57116214802504]
本稿では,時間連続リカレントニューラルネットワークモデルについて紹介する。
暗黙の非線形性によって学習システムの力学を宣言する代わりに、線形一階力学系のネットワークを構築する。
これらのニューラルネットワークは安定かつ有界な振る舞いを示し、ニューラル常微分方程式の族の中で優れた表現性をもたらす。
論文 参考訳(メタデータ) (2020-06-08T09:53:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。