論文の概要: Creating 'Full-Stack' Hybrid Reasoning Systems that Prioritize and Enhance Human Intelligence
- arxiv url: http://arxiv.org/abs/2504.13477v1
- Date: Fri, 18 Apr 2025 05:38:21 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-28 19:07:52.073286
- Title: Creating 'Full-Stack' Hybrid Reasoning Systems that Prioritize and Enhance Human Intelligence
- Title(参考訳): ヒューマンインテリジェンスを優先・強化する「フルスタック」ハイブリッド推論システムの構築
- Authors: Sean Koon,
- Abstract要約: 本稿では,問題を反映する人間の能力を向上する生成型AIベースのツールの開発を提案する。
人間の参加とコントロールを集中化する手段として、AIと人間の能力を統合するための高レベルのモデルも説明されている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The idea of augmented or hybrid intelligence offers a compelling vision for combining human and AI capabilities, especially in tasks where human wisdom, expertise, or common sense are essential. Unfortunately, human reasoning can be flawed and shortsighted, resulting in adverse individual impacts or even long-term societal consequences. While strong efforts are being made to develop and optimize the AI aspect of hybrid reasoning, the real urgency lies in fostering wiser and more intelligent human participation. Tools that enhance critical thinking, ingenuity, expertise, and even wisdom could be essential in addressing the challenges of our emerging future. This paper proposes the development of generative AI-based tools that enhance both the human ability to reflect upon a problem as well as the ability to explore the technical aspects of it. A high-level model is also described for integrating AI and human capabilities in a way that centralizes human participation and control.
- Abstract(参考訳): 拡張現実やハイブリッドインテリジェンスというアイデアは、人間の知恵、専門知識、常識が不可欠であるタスクにおいて、人間とAIの能力を組み合わせるための魅力的なビジョンを提供する。
残念なことに、人間の推論には欠陥があり、近視性があり、結果として個人の影響や長期的な社会的影響が生じる。
ハイブリッド推論のAI的側面を開発、最適化するために、強い努力が続けられている一方で、真の緊急性は、より賢くよりインテリジェントな人間の参加を促進することである。
批判的思考、創発性、専門知識、さらには知恵さえも向上させるツールは、新たな未来の課題に取り組む上で不可欠です。
本稿では,問題を反映する人間の能力と,その技術的側面を探求する能力の両方を向上する,生成型AIベースのツールの開発を提案する。
人間の参加とコントロールを集中化する手段として、AIと人間の能力を統合するための高レベルのモデルも説明されている。
関連論文リスト
- A Beautiful Mind: Principles and Strategies for AI-Augmented Human Reasoning [0.0]
本稿では,人間中心型拡張推論パラダイムについて概説する。
人間の推論とAIアルゴリズムのブリッジとして機能するインタラクションモードの例を提供する。
論文 参考訳(メタデータ) (2025-02-05T20:57:29Z) - Aligning Generalisation Between Humans and Machines [74.120848518198]
近年のAIの進歩は、科学的発見と意思決定支援において人間を支援できる技術をもたらしたが、民主主義と個人を妨害する可能性がある。
AIの責任ある使用は、ますます人間とAIのチームの必要性を示している。
これらの相互作用の重要かつしばしば見落とされがちな側面は、人間と機械が一般化する異なる方法である。
論文 参考訳(メタデータ) (2024-11-23T18:36:07Z) - Imagining and building wise machines: The centrality of AI metacognition [78.76893632793497]
AIシステムは知恵を欠いている。
AI研究はタスクレベルの戦略に焦点を当てているが、メタ認知はAIシステムでは未発達である。
メタ認知機能をAIシステムに統合することは、その堅牢性、説明可能性、協力性、安全性を高めるために不可欠である。
論文 参考訳(メタデータ) (2024-11-04T18:10:10Z) - Untangling Critical Interaction with AI in Students Written Assessment [2.8078480738404]
重要な課題は、人間が必須の批判的思考とAIリテラシースキルを備えていることを保証することである。
本稿では,AIと批判的学習者インタラクションの概念を概念化するための第一歩を提供する。
理論的モデルと経験的データの両方を用いて、予備的な発見は、書き込みプロセス中にAIとのディープインタラクションが全般的に欠如していることを示唆している。
論文 参考訳(メタデータ) (2024-04-10T12:12:50Z) - The Interplay of Learning, Analytics, and Artificial Intelligence in Education: A Vision for Hybrid Intelligence [0.45207442500313766]
私は、AIのツールとしての狭義の概念化に挑戦し、AIの代替概念化の重要性を主張します。
人工知能と人工情報処理の違いを強調し、AIが人間の学習を理解するための道具としても役立つことを実証する。
本稿では、人間の認知の外部化、人間のメンタルモデルに影響を与えるAIモデルの内部化、密結合された人間とAIハイブリッドインテリジェンスシステムによる人間の認知の拡張という、AIのユニークな概念化について述べる。
論文 参考訳(メタデータ) (2024-03-24T10:07:46Z) - Advancing Explainable AI Toward Human-Like Intelligence: Forging the
Path to Artificial Brain [0.7770029179741429]
説明可能なAI(XAI)における人工知能(AI)と神経科学の交差は、複雑な意思決定プロセスにおける透明性と解釈可能性を高めるために重要である。
本稿では,機能ベースから人間中心のアプローチまで,XAI方法論の進化について考察する。
生成モデルにおける説明可能性の達成、責任あるAIプラクティスの確保、倫理的意味への対処に関する課題について論じる。
論文 参考訳(メタデータ) (2024-02-07T14:09:11Z) - Enabling High-Level Machine Reasoning with Cognitive Neuro-Symbolic
Systems [67.01132165581667]
本稿では,認知アーキテクチャを外部のニューロシンボリックコンポーネントと統合することにより,AIシステムにおける高レベル推論を実現することを提案する。
本稿では,ACT-Rを中心としたハイブリッドフレームワークについて紹介し,最近の応用における生成モデルの役割について論じる。
論文 参考訳(メタデータ) (2023-11-13T21:20:17Z) - Trustworthy AI: A Computational Perspective [54.80482955088197]
我々は,信頼に値するAIを実現する上で最も重要な6つの要素,(i)安全とロバスト性,(ii)非差別と公正,(iii)説明可能性,(iv)プライバシー,(v)説明可能性と監査性,(vi)環境ウェルビーイングに焦点をあてる。
各次元について、分類学に基づく最近の関連技術について概観し、実世界のシステムにおけるそれらの応用を概説する。
論文 参考訳(メタデータ) (2021-07-12T14:21:46Z) - Building Bridges: Generative Artworks to Explore AI Ethics [56.058588908294446]
近年,人工知能(AI)技術が社会に与える影響の理解と緩和に重点が置かれている。
倫理的AIシステムの設計における重要な課題は、AIパイプラインには複数の利害関係者があり、それぞれがそれぞれ独自の制約と関心を持っていることだ。
このポジションペーパーは、生成的アートワークが、アクセス可能で強力な教育ツールとして機能することで、この役割を果たすことができる可能性のいくつかを概説する。
論文 参考訳(メタデータ) (2021-06-25T22:31:55Z) - Future Trends for Human-AI Collaboration: A Comprehensive Taxonomy of
AI/AGI Using Multiple Intelligences and Learning Styles [95.58955174499371]
我々は、複数の人間の知性と学習スタイルの様々な側面を説明し、様々なAI問題領域に影響を及ぼす可能性がある。
未来のAIシステムは、人間のユーザと互いにコミュニケーションするだけでなく、知識と知恵を効率的に交換できる。
論文 参考訳(メタデータ) (2020-08-07T21:00:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。