Optimizing Electric Vehicle Charging Station Locations: A Data-driven System with Multi-source Fusion
- URL: http://arxiv.org/abs/2504.13517v1
- Date: Fri, 18 Apr 2025 07:10:48 GMT
- Title: Optimizing Electric Vehicle Charging Station Locations: A Data-driven System with Multi-source Fusion
- Authors: Lihuan Li, Du Yin, Hao Xue, David Lillo-Trynes, Flora Salim,
- Abstract summary: We develop a data-driven system based on existing EV trips in New South Wales (NSW) state, Australia.<n>Our system integrates data sources including EV trip data, geographical data such as route data and Local Government Area (LGA) boundaries.<n>The outcome of this work can provide a platform for discussion to develop new insights that could be used to give guidance on where to position future EV charging stations.
- Score: 2.993678682876725
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the growing electric vehicles (EVs) charging demand, urban planners face the challenges of providing charging infrastructure at optimal locations. For example, range anxiety during long-distance travel and the inadequate distribution of residential charging stations are the major issues many cities face. To achieve reasonable estimation and deployment of the charging demand, we develop a data-driven system based on existing EV trips in New South Wales (NSW) state, Australia, incorporating multiple factors that enhance the geographical feasibility of recommended charging stations. Our system integrates data sources including EV trip data, geographical data such as route data and Local Government Area (LGA) boundaries, as well as features like fire and flood risks, and Points of Interest (POIs). We visualize our results to intuitively demonstrate the findings from our data-driven, multi-source fusion system, and evaluate them through case studies. The outcome of this work can provide a platform for discussion to develop new insights that could be used to give guidance on where to position future EV charging stations.
Related papers
- ChatBEV: A Visual Language Model that Understands BEV Maps [58.3005092762598]
We introduce ChatBEV-QA, a novel BEV VQA benchmark containing over 137k questions.
This benchmark is constructed using a novel data collection pipeline that generates scalable and informative VQA data for BEV maps.
We propose a language-driven traffic scene generation pipeline, where ChatBEV facilitates map understanding and text-aligned navigation guidance.
arXiv Detail & Related papers (2025-03-18T06:12:38Z) - SimBEV: A Synthetic Multi-Task Multi-Sensor Driving Data Generation Tool and Dataset [101.51012770913627]
Bird's-eye view (BEV) perception has garnered significant attention in autonomous driving in recent years.<n>SimBEV is a randomized synthetic data generation tool that is extensively scalable and scalable.<n>SimBEV is used to create the SimBEV dataset, a large collection of annotated perception data from diverse driving scenarios.
arXiv Detail & Related papers (2025-02-04T00:00:06Z) - Towards Using Machine Learning to Generatively Simulate EV Charging in Urban Areas [1.1434534164449743]
This study addresses the challenge of predicting electric vehicle (EV) charging profiles in urban locations with limited data.<n>Our model focuses on predicted peak power demand and daily load, providing insights into charging behavior.
arXiv Detail & Related papers (2024-12-13T19:55:19Z) - Charge Manipulation Attacks Against Smart Electric Vehicle Charging Stations and Deep Learning-based Detection Mechanisms [49.37592437398933]
"Smart" electric vehicle charging stations (EVCSs) will be a key step toward achieving green transportation.
We investigate charge manipulation attacks (CMAs) against EV charging, in which an attacker manipulates the information exchanged during smart charging operations.
We propose an unsupervised deep learning-based mechanism to detect CMAs by monitoring the parameters involved in EV charging.
arXiv Detail & Related papers (2023-10-18T18:38:59Z) - Forecasting Electric Vehicle Charging Station Occupancy: Smarter
Mobility Data Challenge [0.0]
The Smarter Mobility Data Challenge has focused on the development of forecasting models to predict EV charging station occupancy.
This challenge involved analysing a dataset of 91 charging stations across four geographical areas over seven months in 2020- 2021.
The results highlight the potential of hierarchical forecasting approaches to accurately predict EV charging station occupancy.
arXiv Detail & Related papers (2023-06-09T07:22:18Z) - Berlin V2X: A Machine Learning Dataset from Multiple Vehicles and Radio
Access Technologies [56.77079930521082]
We have conducted a detailed measurement campaign that paves the way to a plethora of diverse ML-based studies.
The resulting datasets offer GPS-located wireless measurements across diverse urban environments for both cellular (with two different operators) and sidelink radio access technologies.
We provide an initial analysis of the data showing some of the challenges that ML needs to overcome and the features that ML can leverage.
arXiv Detail & Related papers (2022-12-20T15:26:39Z) - Web Mining to Inform Locations of Charging Stations for Electric
Vehicles [18.25327009053813]
Electric vehicle (EV) owners have a certain limited willingness to walk between charging stations and points-of-interest (POIs)
We propose the use of web mining: we characterize the influence of different POIs from OpenStreetMap on the utilization of charging stations.
We present a tailored interpretable model that takes into account the full spatial distributions of both the POIs and the charging stations.
arXiv Detail & Related papers (2022-03-10T17:00:18Z) - An Energy Consumption Model for Electrical Vehicle Networks via Extended
Federated-learning [50.85048976506701]
This paper proposes a novel solution to range anxiety based on a federated-learning model.
It is capable of estimating battery consumption and providing energy-efficient route planning for vehicle networks.
arXiv Detail & Related papers (2021-11-13T15:03:44Z) - Optimal Placement of Public Electric Vehicle Charging Stations Using
Deep Reinforcement Learning [0.0]
A novel application of Reinforcement Learning (RL) is able to find optimal locations for new charging stations.
The proposed RL framework can be refined and applied to cities across the world to optimize charging station placement.
arXiv Detail & Related papers (2021-08-17T17:25:30Z) - An Experimental Urban Case Study with Various Data Sources and a Model
for Traffic Estimation [65.28133251370055]
We organize an experimental campaign with video measurement in an area within the urban network of Zurich, Switzerland.
We focus on capturing the traffic state in terms of traffic flow and travel times by ensuring measurements from established thermal cameras.
We propose a simple yet efficient Multiple Linear Regression (MLR) model to estimate travel times with fusion of various data sources.
arXiv Detail & Related papers (2021-08-02T08:13:57Z) - Urban Sensing based on Mobile Phone Data: Approaches, Applications and
Challenges [67.71975391801257]
Much concern in mobile data analysis is related to human beings and their behaviours.
This work aims to review the methods and techniques that have been implemented to discover knowledge from mobile phone data.
arXiv Detail & Related papers (2020-08-29T15:14:03Z) - Data-Driven Prediction of Route-Level Energy Use for Mixed-Vehicle
Transit Fleets [7.2775693810940565]
Public transit agencies are seeking to reduce their fuel use by employing electric vehicles (EVs)
Because of the high upfront cost of EVs, most agencies can afford only mixed fleets of internal-combustion and electric vehicles.
We present a novel framework for the data-driven prediction of route-level energy use for mixed-vehicle transit fleets.
arXiv Detail & Related papers (2020-04-10T16:31:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.