論文の概要: How to Achieve Higher Accuracy with Less Training Points?
- arxiv url: http://arxiv.org/abs/2504.13586v1
- Date: Fri, 18 Apr 2025 09:38:26 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-28 16:22:44.040317
- Title: How to Achieve Higher Accuracy with Less Training Points?
- Title(参考訳): トレーニングポイントの少ない高精度を実現するには?
- Authors: Jinghan Yang, Anupam Pani, Yunchao Zhang,
- Abstract要約: 本稿では,学習セットにどのトレーニングサンプルを含めるべきかを決定するための影響関数に基づく手法を提案する。
当社のアプローチでは、データセット全体のトレーニングに匹敵するパフォーマンスを示しながら、データの10%しか使用していません。
- 参考スコア(独自算出の注目度): 2.1834099301440526
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the era of large-scale model training, the extensive use of available datasets has resulted in significant computational inefficiencies. To tackle this issue, we explore methods for identifying informative subsets of training data that can achieve comparable or even superior model performance. We propose a technique based on influence functions to determine which training samples should be included in the training set. We conducted empirical evaluations of our method on binary classification tasks utilizing logistic regression models. Our approach demonstrates performance comparable to that of training on the entire dataset while using only 10% of the data. Furthermore, we found that our method achieved even higher accuracy when trained with just 60% of the data.
- Abstract(参考訳): 大規模なモデルトレーニングの時代、利用可能なデータセットを広範囲に使用することで、計算の非効率性が著しく向上した。
この問題に対処するために、モデル性能に匹敵する、あるいはそれ以上に優れた訓練データに対する情報的サブセットを特定する方法を検討する。
本稿では,学習セットにどのトレーニングサンプルを含めるべきかを決定するための影響関数に基づく手法を提案する。
我々は,ロジスティック回帰モデルを用いた二項分類タスクにおいて,本手法の実証評価を行った。
当社のアプローチでは、データセット全体のトレーニングに匹敵するパフォーマンスを示しながら、データの10%しか使用していません。
さらに,データの60%をトレーニングすると,精度が向上することがわかった。
関連論文リスト
- Capturing the Temporal Dependence of Training Data Influence [100.91355498124527]
我々は、訓練中にデータポイントを除去する影響を定量化する、軌跡特異的な離脱の影響の概念を定式化する。
軌道固有LOOの効率的な近似を可能にする新しい手法であるデータ値埋め込みを提案する。
データバリューの埋め込みは、トレーニングデータの順序付けをキャプチャするので、モデルトレーニングのダイナミクスに関する貴重な洞察を提供する。
論文 参考訳(メタデータ) (2024-12-12T18:28:55Z) - What Do Learning Dynamics Reveal About Generalization in LLM Reasoning? [83.83230167222852]
モデルの一般化動作は,事前記憶列車の精度と呼ばれるトレーニング指標によって効果的に特徴づけられることがわかった。
モデルの学習行動と一般化を結びつけることで、トレーニング戦略に目標とする改善を導くことができる。
論文 参考訳(メタデータ) (2024-11-12T09:52:40Z) - Distilled Datamodel with Reverse Gradient Matching [74.75248610868685]
オフライントレーニングとオンライン評価段階を含む,データ影響評価のための効率的なフレームワークを提案する。
提案手法は, 直接再学習法と比較して, プロセスの大幅な高速化を図りながら, 同等のモデル行動評価を実現する。
論文 参考訳(メタデータ) (2024-04-22T09:16:14Z) - How to Train Data-Efficient LLMs [56.41105687693619]
事前学習言語モデル(LLM)に対するデータ効率のアプローチについて検討する。
Ask-LLMと密度サンプリングがそれぞれのカテゴリで最適であることがわかった。
何百もの評価タスクと事前学習作業を含む19個のサンプルを比較したところ,Ask-LLMと密度がそれぞれのカテゴリで最適な方法であることが判明した。
論文 参考訳(メタデータ) (2024-02-15T02:27:57Z) - Exploring Learning Complexity for Efficient Downstream Dataset Pruning [8.990878450631596]
既存のデータセットプルーニングメソッドでは、データセット全体のトレーニングが必要になる。
本稿では、DLC(Distorting-based Learning Complexity)という、単純で、新規で、トレーニング不要な難易度スコアを提案する。
本手法は,より高速に学習できるサンプルを少ないパラメータで学習できるという観察結果に動機付けられている。
論文 参考訳(メタデータ) (2024-02-08T02:29:33Z) - Online Importance Sampling for Stochastic Gradient Optimization [33.42221341526944]
本稿では,トレーニング中のデータの重要度を効率的に計算する実用的なアルゴリズムを提案する。
また、ネットワーク出力の損失w.r.t.の導出に基づく新しいメトリクスを導入し、ミニバッチの重要度サンプリング用に設計した。
論文 参考訳(メタデータ) (2023-11-24T13:21:35Z) - Efficient Grammatical Error Correction Via Multi-Task Training and
Optimized Training Schedule [55.08778142798106]
原文と修正文のアライメントを利用する補助タスクを提案する。
我々は,各タスクをシーケンス・ツー・シーケンス問題として定式化し,マルチタスク・トレーニングを行う。
トレーニングに使用されるデータセットの順序や、データセット内の個々のインスタンスでさえ、最終的なパフォーマンスに重要な影響を与える可能性があることが分かりました。
論文 参考訳(メタデータ) (2023-11-20T14:50:12Z) - Topological Quality of Subsets via Persistence Matching Diagrams [0.196629787330046]
我々は、トポロジカルデータ解析技術を用いて、そのデータセットに関するサブセットの品質を測定する。
特に,本手法では,選択したサブセットが教師付き学習モデルの貧弱な性能をもたらす可能性がある理由を説明することができる。
論文 参考訳(メタデータ) (2023-06-04T17:08:41Z) - Dataset Pruning: Reducing Training Data by Examining Generalization
Influence [30.30255670341501]
すべてのトレーニングデータは、モデルのパフォーマンスに寄与しますか?
モデルのパフォーマンスを著しく犠牲にすることなく、プロキシトレーニングセットとして、トレーニングデータ全体から最小限のサブセットを構築するには、どうすればよいのか?
論文 参考訳(メタデータ) (2022-05-19T05:36:35Z) - Learning to be a Statistician: Learned Estimator for Number of Distinct
Values [54.629042119819744]
列内の異なる値の数(NDV)を推定することは、データベースシステムにおける多くのタスクに有用である。
本研究では、ランダム(オンライン/オフライン)サンプルから正確なNDV推定を導出する方法に焦点を当てる。
教師付き学習フレームワークにおいて,NDV推定タスクを定式化し,モデルを推定対象として学習することを提案する。
論文 参考訳(メタデータ) (2022-02-06T15:42:04Z) - DIVINE: Diverse Influential Training Points for Data Visualization and
Model Refinement [32.045420977032926]
本稿では,モデル行動の有用な説明として,DIVerse InfluEntial (DIVINE) トレーニングポイントのセットを選択する手法を提案する。
本手法は,公平性向上のために除去できる不公平性誘導訓練点を同定することができる。
論文 参考訳(メタデータ) (2021-07-13T10:50:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。