Robust Decentralized Quantum Kernel Learning for Noisy and Adversarial Environment
- URL: http://arxiv.org/abs/2504.13782v1
- Date: Fri, 18 Apr 2025 16:33:07 GMT
- Title: Robust Decentralized Quantum Kernel Learning for Noisy and Adversarial Environment
- Authors: Wenxuan Ma, Kuan-Cheng Chen, Shang Yu, Mengxiang Liu, Ruilong Deng,
- Abstract summary: This paper proposes a general decentralized framework for quantum kernel learning (QKL)<n>It has robustness against quantum noise and can also be designed to defend adversarial information attacks forming a robust approach named RDQKL.
- Score: 5.992017694506713
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper proposes a general decentralized framework for quantum kernel learning (QKL). It has robustness against quantum noise and can also be designed to defend adversarial information attacks forming a robust approach named RDQKL. We analyze the impact of noise on QKL and study the robustness of decentralized QKL to the noise. By integrating robust decentralized optimization techniques, our method is able to mitigate the impact of malicious data injections across multiple nodes. Experimental results demonstrate that our approach maintains high accuracy under noisy quantum operations and effectively counter adversarial modifications, offering a promising pathway towards the future practical, scalable and secure quantum machine learning (QML).
Related papers
- TensoMeta-VQC: A Tensor-Train-Guided Meta-Learning Framework for Robust and Scalable Variational Quantum Computing [60.996803677584424]
TensoMeta-VQC is a novel tensor-train (TT)-guided meta-learning framework designed to improve the robustness and scalability of VQC significantly.<n>Our framework fully delegates the generation of quantum circuit parameters to a classical TT network, effectively decoupling optimization from quantum hardware.
arXiv Detail & Related papers (2025-08-01T23:37:55Z) - Resource-Efficient Hadamard Test Circuits for Nonlinear Dynamics on a Trapped-Ion Quantum Computer [1.2063443893298391]
We propose a low-depth implementation of a class of Hadamard test circuits.<n>We develop a parameterized quantum ansatz specifically tailored for variational algorithms.<n>Our findings demonstrate a significant reduction in single- and two-qubit gate counts.
arXiv Detail & Related papers (2025-07-25T13:16:54Z) - Provably Robust Training of Quantum Circuit Classifiers Against Parameter Noise [49.97673761305336]
Noise remains a major obstacle to achieving reliable quantum algorithms.<n>We present a provably noise-resilient training theory and algorithm to enhance the robustness of parameterized quantum circuit classifiers.
arXiv Detail & Related papers (2025-05-24T02:51:34Z) - Realizing Quantum Adversarial Defense on a Trapped-ion Quantum Processor [3.1858340237924776]
We implement a data re-uploading-based quantum classifier on an ion-trap quantum processor.
We demonstrate its superior robustness on the MNIST dataset.
arXiv Detail & Related papers (2025-03-04T09:22:59Z) - Bayesian Quantum Amplitude Estimation [49.1574468325115]
We introduce BAE, a noise-aware Bayesian algorithm for quantum amplitude estimation.<n>We show that BAE achieves Heisenberg-limited estimation and benchmark it against other approaches.
arXiv Detail & Related papers (2024-12-05T18:09:41Z) - Optimal Quantum Purity Amplification [2.05170973574812]
We present the optimal QPA protocol for general quantum systems and global noise.<n>We provide an efficient implementation of the protocol based on generalized quantum phase estimation.<n> Numerical simulations demonstrate the effectiveness of our protocol applied to quantum simulation of Hamiltonian evolution.
arXiv Detail & Related papers (2024-09-26T17:46:00Z) - Benchmarking Quantum Generative Learning: A Study on Scalability and Noise Resilience using QUARK [0.3624329910445628]
This paper investigates the scalability and noise resilience of quantum generative learning applications.
We employ rigorous benchmarking techniques to track progress and identify challenges in scaling QML algorithms.
We show that QGANs are not as affected by the curse of dimensionality as QCBMs and to which extent QCBMs are resilient to noise.
arXiv Detail & Related papers (2024-03-27T15:05:55Z) - Overcoming Noise Limitations in QKD with Quantum Privacy Amplification [0.0]
We show experimentally that QPA is able to increase the secure key rate achievable with QKD by improving the quality of distributed entanglement.
We show that QPA enables key generation at noise levels that previously prevented key generation.
Results are paramount for the implementation of a global quantum network linking quantum processors and ensuring future-proof data security.
arXiv Detail & Related papers (2024-02-08T14:07:36Z) - GQHAN: A Grover-inspired Quantum Hard Attention Network [53.96779043113156]
Grover-inspired Quantum Hard Attention Mechanism (GQHAM) is proposed.
GQHAN adeptly surmounts the non-differentiability hurdle, surpassing the efficacy of extant quantum soft self-attention mechanisms.
The proposal of GQHAN lays the foundation for future quantum computers to process large-scale data, and promotes the development of quantum computer vision.
arXiv Detail & Related papers (2024-01-25T11:11:16Z) - Harnessing Inherent Noises for Privacy Preservation in Quantum Machine
Learning [11.45148186874482]
We propose to harness inherent quantum noises to protect data privacy in quantum machine learning.
Especially, considering the Noisy Intermediate-Scale Quantum (NISQ) devices, we leverage the unavoidable shot noise and incoherent noise.
arXiv Detail & Related papers (2023-12-18T11:52:44Z) - Probabilistic Sampling of Balanced K-Means using Adiabatic Quantum Computing [93.83016310295804]
AQCs allow to implement problems of research interest, which has sparked the development of quantum representations for computer vision tasks.
In this work, we explore the potential of using this information for probabilistic balanced k-means clustering.
Instead of discarding non-optimal solutions, we propose to use them to compute calibrated posterior probabilities with little additional compute cost.
This allows us to identify ambiguous solutions and data points, which we demonstrate on a D-Wave AQC on synthetic tasks and real visual data.
arXiv Detail & Related papers (2023-10-18T17:59:45Z) - A Quantum Kernel Learning Approach to Acoustic Modeling for Spoken
Command Recognition [69.97260364850001]
We propose a quantum kernel learning (QKL) framework to address the inherent data sparsity issues.
We project acoustic features based on classical-to-quantum feature encoding.
arXiv Detail & Related papers (2022-11-02T16:46:23Z) - Pulse-level noisy quantum circuits with QuTiP [53.356579534933765]
We introduce new tools in qutip-qip, QuTiP's quantum information processing package.
These tools simulate quantum circuits at the pulse level, leveraging QuTiP's quantum dynamics solvers and control optimization features.
We show how quantum circuits can be compiled on simulated processors, with control pulses acting on a target Hamiltonian.
arXiv Detail & Related papers (2021-05-20T17:06:52Z) - Quantum circuit architecture search for variational quantum algorithms [88.71725630554758]
We propose a resource and runtime efficient scheme termed quantum architecture search (QAS)
QAS automatically seeks a near-optimal ansatz to balance benefits and side-effects brought by adding more noisy quantum gates.
We implement QAS on both the numerical simulator and real quantum hardware, via the IBM cloud, to accomplish data classification and quantum chemistry tasks.
arXiv Detail & Related papers (2020-10-20T12:06:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.